Cargando…
Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the mu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882072/ https://www.ncbi.nlm.nih.gov/pubmed/36711918 http://dx.doi.org/10.1101/2023.01.10.523309 |
_version_ | 1784879234320171008 |
---|---|
author | Russell, Nicholas X. Burra, Kaulini Shah, Ronak Bottasso-Arias, Natalia Mohanakrishnan, Megha Snowball, John Ediga, Harshavardhana H. Madala, Satish K Sinner, Debora |
author_facet | Russell, Nicholas X. Burra, Kaulini Shah, Ronak Bottasso-Arias, Natalia Mohanakrishnan, Megha Snowball, John Ediga, Harshavardhana H. Madala, Satish K Sinner, Debora |
author_sort | Russell, Nicholas X. |
collection | PubMed |
description | Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR. |
format | Online Article Text |
id | pubmed-9882072 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-98820722023-01-28 Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea Russell, Nicholas X. Burra, Kaulini Shah, Ronak Bottasso-Arias, Natalia Mohanakrishnan, Megha Snowball, John Ediga, Harshavardhana H. Madala, Satish K Sinner, Debora bioRxiv Article Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR. Cold Spring Harbor Laboratory 2023-08-24 /pmc/articles/PMC9882072/ /pubmed/36711918 http://dx.doi.org/10.1101/2023.01.10.523309 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Russell, Nicholas X. Burra, Kaulini Shah, Ronak Bottasso-Arias, Natalia Mohanakrishnan, Megha Snowball, John Ediga, Harshavardhana H. Madala, Satish K Sinner, Debora Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title | Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title_full | Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title_fullStr | Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title_full_unstemmed | Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title_short | Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
title_sort | wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882072/ https://www.ncbi.nlm.nih.gov/pubmed/36711918 http://dx.doi.org/10.1101/2023.01.10.523309 |
work_keys_str_mv | AT russellnicholasx wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT burrakaulini wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT shahronak wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT bottassoariasnatalia wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT mohanakrishnanmegha wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT snowballjohn wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT edigaharshavardhanah wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT madalasatishk wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea AT sinnerdebora wntsignalingregulatesionchannelexpressiontopromotesmoothmuscleandcartilageformationindevelopingmousetrachea |