Cargando…

Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathies (CAAs). We trained thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Daniel R., Magaki, Shino D., Vinters, Harry V., Yong, William H., Monuki, Edwin S., Williams, Christopher K., Martini, Alessandra C., DeCarli, Charles, Khacherian, Chris, Graff, John P., Dugger, Brittany N., Keiser, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882138/
https://www.ncbi.nlm.nih.gov/pubmed/36711704
http://dx.doi.org/10.1101/2023.01.13.524019
_version_ 1784879243381964800
author Wong, Daniel R.
Magaki, Shino D.
Vinters, Harry V.
Yong, William H.
Monuki, Edwin S.
Williams, Christopher K.
Martini, Alessandra C.
DeCarli, Charles
Khacherian, Chris
Graff, John P.
Dugger, Brittany N.
Keiser, Michael J.
author_facet Wong, Daniel R.
Magaki, Shino D.
Vinters, Harry V.
Yong, William H.
Monuki, Edwin S.
Williams, Christopher K.
Martini, Alessandra C.
DeCarli, Charles
Khacherian, Chris
Graff, John P.
Dugger, Brittany N.
Keiser, Michael J.
author_sort Wong, Daniel R.
collection PubMed
description Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathies (CAAs). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that correlated with gold-standard CERAD-like WSI scoring (p=0.07± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation.
format Online
Article
Text
id pubmed-9882138
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-98821382023-01-28 Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels Wong, Daniel R. Magaki, Shino D. Vinters, Harry V. Yong, William H. Monuki, Edwin S. Williams, Christopher K. Martini, Alessandra C. DeCarli, Charles Khacherian, Chris Graff, John P. Dugger, Brittany N. Keiser, Michael J. bioRxiv Article Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathies (CAAs). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that correlated with gold-standard CERAD-like WSI scoring (p=0.07± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation. Cold Spring Harbor Laboratory 2023-01-17 /pmc/articles/PMC9882138/ /pubmed/36711704 http://dx.doi.org/10.1101/2023.01.13.524019 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Wong, Daniel R.
Magaki, Shino D.
Vinters, Harry V.
Yong, William H.
Monuki, Edwin S.
Williams, Christopher K.
Martini, Alessandra C.
DeCarli, Charles
Khacherian, Chris
Graff, John P.
Dugger, Brittany N.
Keiser, Michael J.
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title_full Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title_fullStr Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title_full_unstemmed Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title_short Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
title_sort learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882138/
https://www.ncbi.nlm.nih.gov/pubmed/36711704
http://dx.doi.org/10.1101/2023.01.13.524019
work_keys_str_mv AT wongdanielr learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT magakishinod learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT vintersharryv learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT yongwilliamh learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT monukiedwins learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT williamschristopherk learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT martinialessandrac learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT decarlicharles learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT khacherianchris learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT graffjohnp learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT duggerbrittanyn learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels
AT keisermichaelj learningfastandfinegraineddetectionofamyloidneuropathologiesfromcoarsegrainedexpertlabels