Cargando…
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
We motivate and present biVI, which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882246/ https://www.ncbi.nlm.nih.gov/pubmed/36712140 http://dx.doi.org/10.1101/2023.01.13.523995 |
_version_ | 1784879262028791808 |
---|---|
author | Carilli, Maria Gorin, Gennady Choi, Yongin Chari, Tara Pachter, Lior |
author_facet | Carilli, Maria Gorin, Gennady Choi, Yongin Chari, Tara Pachter, Lior |
author_sort | Carilli, Maria |
collection | PubMed |
description | We motivate and present biVI, which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relationship between measurements, biVI models the biophysical processes that give rise to observations. We demonstrate through simulated benchmarking that biVI captures cell type structure in a low-dimensional space and accurately recapitulates parameter values and copy number distributions. On biological data, biVI provides a scalable route for identifying the biophysical mechanisms underlying gene expression. This analytical approach outlines a generalizable strategy for treating multimodal datasets generated by high-throughput, single-cell genomic assays. |
format | Online Article Text |
id | pubmed-9882246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-98822462023-01-28 Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data Carilli, Maria Gorin, Gennady Choi, Yongin Chari, Tara Pachter, Lior bioRxiv Article We motivate and present biVI, which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relationship between measurements, biVI models the biophysical processes that give rise to observations. We demonstrate through simulated benchmarking that biVI captures cell type structure in a low-dimensional space and accurately recapitulates parameter values and copy number distributions. On biological data, biVI provides a scalable route for identifying the biophysical mechanisms underlying gene expression. This analytical approach outlines a generalizable strategy for treating multimodal datasets generated by high-throughput, single-cell genomic assays. Cold Spring Harbor Laboratory 2023-05-02 /pmc/articles/PMC9882246/ /pubmed/36712140 http://dx.doi.org/10.1101/2023.01.13.523995 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Carilli, Maria Gorin, Gennady Choi, Yongin Chari, Tara Pachter, Lior Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title | Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title_full | Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title_fullStr | Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title_full_unstemmed | Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title_short | Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data |
title_sort | biophysical modeling with variational autoencoders for bimodal, single-cell rna sequencing data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882246/ https://www.ncbi.nlm.nih.gov/pubmed/36712140 http://dx.doi.org/10.1101/2023.01.13.523995 |
work_keys_str_mv | AT carillimaria biophysicalmodelingwithvariationalautoencodersforbimodalsinglecellrnasequencingdata AT goringennady biophysicalmodelingwithvariationalautoencodersforbimodalsinglecellrnasequencingdata AT choiyongin biophysicalmodelingwithvariationalautoencodersforbimodalsinglecellrnasequencingdata AT charitara biophysicalmodelingwithvariationalautoencodersforbimodalsinglecellrnasequencingdata AT pachterlior biophysicalmodelingwithvariationalautoencodersforbimodalsinglecellrnasequencingdata |