Cargando…
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
We motivate and present biVI, which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relation...
Autores principales: | Carilli, Maria, Gorin, Gennady, Choi, Yongin, Chari, Tara, Pachter, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882246/ https://www.ncbi.nlm.nih.gov/pubmed/36712140 http://dx.doi.org/10.1101/2023.01.13.523995 |
Ejemplares similares
-
Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data
por: Chari, Tara, et al.
Publicado: (2023) -
RNA velocity unraveled
por: Gorin, Gennady, et al.
Publicado: (2022) -
Length biases in single-cell RNA sequencing of pre-mRNA
por: Gorin, Gennady, et al.
Publicado: (2022) -
Interpretable factor models of single-cell RNA-seq via variational autoencoders
por: Svensson, Valentine, et al.
Publicado: (2020) -
Studying stochastic systems biology of the cell with single-cell genomics data
por: Gorin, Gennady, et al.
Publicado: (2023)