Cargando…

Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming

Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs’ intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yongxing, Kulkarni, Vikram V., Pantaleón García, Jezreel, Leiva-Juárez, Miguel M., Goldblatt, David L., Gulraiz, Fahad, Chen, Jichao, Donepudi, Sri Ramya, Lorenzi, Philip L., Wang, Hao, Wong, Lee-Jun, Tuvim, Michael J., Evans, Scott E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882263/
https://www.ncbi.nlm.nih.gov/pubmed/36711510
http://dx.doi.org/10.1101/2023.01.19.524841
Descripción
Sumario:Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs’ intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODNs) with mitochondrial voltage-dependent anion channel 1 (VDAC1) without dependence on Toll-like receptor 9 (TLR9). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), enhances mitochondrial membrane potential (Δ(Ψm)), and differentially modulates ETC complex activities. These combined effects promote leak of electrons from ETC complex III, resulting in superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy that has the potential to broadly protect patients against pneumonia during periods of peak vulnerability without reliance on currently available antibiotics.