Cargando…

Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming

Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs’ intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yongxing, Kulkarni, Vikram V., Pantaleón García, Jezreel, Leiva-Juárez, Miguel M., Goldblatt, David L., Gulraiz, Fahad, Chen, Jichao, Donepudi, Sri Ramya, Lorenzi, Philip L., Wang, Hao, Wong, Lee-Jun, Tuvim, Michael J., Evans, Scott E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882263/
https://www.ncbi.nlm.nih.gov/pubmed/36711510
http://dx.doi.org/10.1101/2023.01.19.524841
_version_ 1784879264630308864
author Wang, Yongxing
Kulkarni, Vikram V.
Pantaleón García, Jezreel
Leiva-Juárez, Miguel M.
Goldblatt, David L.
Gulraiz, Fahad
Chen, Jichao
Donepudi, Sri Ramya
Lorenzi, Philip L.
Wang, Hao
Wong, Lee-Jun
Tuvim, Michael J.
Evans, Scott E.
author_facet Wang, Yongxing
Kulkarni, Vikram V.
Pantaleón García, Jezreel
Leiva-Juárez, Miguel M.
Goldblatt, David L.
Gulraiz, Fahad
Chen, Jichao
Donepudi, Sri Ramya
Lorenzi, Philip L.
Wang, Hao
Wong, Lee-Jun
Tuvim, Michael J.
Evans, Scott E.
author_sort Wang, Yongxing
collection PubMed
description Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs’ intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODNs) with mitochondrial voltage-dependent anion channel 1 (VDAC1) without dependence on Toll-like receptor 9 (TLR9). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), enhances mitochondrial membrane potential (Δ(Ψm)), and differentially modulates ETC complex activities. These combined effects promote leak of electrons from ETC complex III, resulting in superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy that has the potential to broadly protect patients against pneumonia during periods of peak vulnerability without reliance on currently available antibiotics.
format Online
Article
Text
id pubmed-9882263
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-98822632023-01-28 Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming Wang, Yongxing Kulkarni, Vikram V. Pantaleón García, Jezreel Leiva-Juárez, Miguel M. Goldblatt, David L. Gulraiz, Fahad Chen, Jichao Donepudi, Sri Ramya Lorenzi, Philip L. Wang, Hao Wong, Lee-Jun Tuvim, Michael J. Evans, Scott E. bioRxiv Article Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs’ intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODNs) with mitochondrial voltage-dependent anion channel 1 (VDAC1) without dependence on Toll-like receptor 9 (TLR9). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), enhances mitochondrial membrane potential (Δ(Ψm)), and differentially modulates ETC complex activities. These combined effects promote leak of electrons from ETC complex III, resulting in superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy that has the potential to broadly protect patients against pneumonia during periods of peak vulnerability without reliance on currently available antibiotics. Cold Spring Harbor Laboratory 2023-01-20 /pmc/articles/PMC9882263/ /pubmed/36711510 http://dx.doi.org/10.1101/2023.01.19.524841 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Wang, Yongxing
Kulkarni, Vikram V.
Pantaleón García, Jezreel
Leiva-Juárez, Miguel M.
Goldblatt, David L.
Gulraiz, Fahad
Chen, Jichao
Donepudi, Sri Ramya
Lorenzi, Philip L.
Wang, Hao
Wong, Lee-Jun
Tuvim, Michael J.
Evans, Scott E.
Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title_full Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title_fullStr Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title_full_unstemmed Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title_short Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
title_sort antimicrobial mitochondrial reactive oxygen species induction by lung epithelial metabolic reprogramming
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882263/
https://www.ncbi.nlm.nih.gov/pubmed/36711510
http://dx.doi.org/10.1101/2023.01.19.524841
work_keys_str_mv AT wangyongxing antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT kulkarnivikramv antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT pantaleongarciajezreel antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT leivajuarezmiguelm antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT goldblattdavidl antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT gulraizfahad antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT chenjichao antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT donepudisriramya antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT lorenziphilipl antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT wanghao antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT wongleejun antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT tuvimmichaelj antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming
AT evansscotte antimicrobialmitochondrialreactiveoxygenspeciesinductionbylungepithelialmetabolicreprogramming