Cargando…

A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning

Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker det...

Descripción completa

Detalles Bibliográficos
Autores principales: Gebodh, Nigel, Miskovic, Vladimir, Laszlo, Sarah, Datta, Abhishek, Bikson, Marom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882307/
https://www.ncbi.nlm.nih.gov/pubmed/36712027
http://dx.doi.org/10.1101/2023.01.18.524615
Descripción
Sumario:Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness – detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework’s decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.