Cargando…
Computational Analysis of Maize Enhancer Regulatory Elements Using ATAC-STARR-seq
The blueprints to development, response to the environment, and cellular function are largely the manifestation of distinct gene expression programs controlled by the spatiotemporal activity of cis-regulatory elements. Although biochemical methods for identifying accessible chromatin – a hallmark of...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882361/ https://www.ncbi.nlm.nih.gov/pubmed/36711646 http://dx.doi.org/10.1101/2023.01.20.524917 |
Sumario: | The blueprints to development, response to the environment, and cellular function are largely the manifestation of distinct gene expression programs controlled by the spatiotemporal activity of cis-regulatory elements. Although biochemical methods for identifying accessible chromatin – a hallmark of active cis-regulatory elements – have been developed, approaches capable of measuring and quantifying cis-regulatory activity are only beginning to be realized. Massively Parallel Reporter Assays coupled to chromatin accessibility profiling present a high-throughput solution for testing the transcription-activating capacity of millions of putatively regulatory DNA sequences in parallel. However, clear computational pipelines for analyzing these high-throughput sequencing-based reporter assays are lacking. In this protocol, I layout and rationalize a computational framework for the processing and analysis of Assay for Transposase Accessible Chromatin profiling followed by Self-Transcribed Active Regulatory Region sequencing (ATAC-STARR-seq) data from a recent study in Zea mays. The approach described herein can be adapted to other sequencing-based reporter assays and is largely agnostic to the model organism with the appropriate input substitutions. |
---|