Cargando…
Bayesian sequential approach to monitor COVID-19 variants through positivity rate from wastewater
Trends in COVID-19 infection have changed throughout the pandemic due to myriad factors, including changes in transmission driven by social behavior, vaccine development and uptake, mutations in the virus genome, and public health policies. Mass testing was an essential control measure for curtailin...
Autores principales: | Montesinos-López, J. Cricelio, Daza–Torres, Maria L., García, Yury E., Herrera, César, Bess, C. Winston, Bischel, Heather N., Nuño, Miriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882402/ https://www.ncbi.nlm.nih.gov/pubmed/36711939 http://dx.doi.org/10.1101/2023.01.10.23284365 |
Ejemplares similares
-
Bayesian sequential approach to monitor COVID-19 variants through test positivity rate from wastewater
por: Montesinos-López, J. Cricelio, et al.
Publicado: (2023) -
Expansion of wastewater-based disease surveillance to improve health equity in California’s Central Valley: sequential shifts in case-to-wastewater and hospitalization-to-wastewater ratios
por: Kadonsky, Krystin F., et al.
Publicado: (2023) -
Model training periods impact estimation of COVID-19 incidence from wastewater viral loads
por: Daza-Torres, Maria L., et al.
Publicado: (2023) -
The Role of SARS-CoV-2 Testing on Hospitalizations in California
por: Montesinos-López, José Cricelio, et al.
Publicado: (2021) -
Bayesian sequential data assimilation for COVID-19 forecasting
por: Daza-Torres, Maria L., et al.
Publicado: (2022)