Cargando…
Joint estimation and imputation of variant functional effects using high throughput assay data
Deep mutational scanning assays enable the functional assessment of variants in high throughput. Phenotypic measurements from these assays are broadly concordant with clinical outcomes but are prone to noise at the individual variant level. We develop a framework to exploit related measurements with...
Autores principales: | Yu, Tian, Fife, James D., Adzhubey, Ivan, Sherwood, Richard, Cassa, Christopher A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882428/ https://www.ncbi.nlm.nih.gov/pubmed/36711907 http://dx.doi.org/10.1101/2023.01.06.23284280 |
Ejemplares similares
-
Estimating clinical risk in gene regions from population sequencing cohort data
por: Fife, James D., et al.
Publicado: (2023) -
KOMPUTE: imputing summary statistics of missing phenotypes in high-throughput model organism data
por: Warkentin, Coby, et al.
Publicado: (2023) -
Data Driven Estimation of Imputation Error—A Strategy for Imputation with a Reject Option
por: Bak, Nikolaj, et al.
Publicado: (2016) -
Multiple imputation for discrete data: Evaluation of the joint latent normal model
por: Quartagno, Matteo, et al.
Publicado: (2019) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014)