Cargando…
Improved Quantitative Parameter Estimation for Prostate T2 Relaxometry using Convolutional Neural Networks
This work seeks to evaluate multiple methods for quantitative parameter estimation from standard T(2) mapping acquisitions in the prostate. The T(2) estimation performance of methods based on neural networks (NN) was quantitatively compared to that of conventional curve fitting techniques. Large phy...
Autores principales: | Bolan, Patrick J., Saunders, Sara L., Kay, Kendrick, Gross, Mitchell, Akcakaya, Mehmet, Metzger, Gregory J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882442/ https://www.ncbi.nlm.nih.gov/pubmed/36711813 http://dx.doi.org/10.1101/2023.01.11.23284194 |
Ejemplares similares
-
Training Convolutional Networks for Prostate Segmentation With Limited Data
por: SAUNDERS, SARA L., et al.
Publicado: (2021) -
Synthetic quantitative MRI through relaxometry modelling
por: Callaghan, Martina F., et al.
Publicado: (2016) -
Efficiency analysis for quantitative MRI of T1 and T2 relaxometry methods
por: Leitão, David, et al.
Publicado: (2021) -
The Utility of a Convolutional Neural Network for Generating a Myelin Volume Index Map from Rapid Simultaneous Relaxometry Imaging
por: Tachibana, Yasuhiko, et al.
Publicado: (2019) -
Quantitative Evaluation of Liver Fibrosis on T1 Relaxometry in Comparison with Fibroscan
Publicado: (2020)