Cargando…

A Quantum Mechanical Description of Photosensitization in Photodynamic Therapy using a Two-Electron Molecule Approximation

A fundamental, Quantum Mechanical description of photoactivation of a generic photosensitizer and the ensuing transfer of energy to endogenous oxygen as part of the Type II pathway to photodamage during photodynamic therapy (PDT) is presented. The PS and molecular oxygen are approximated as two-elec...

Descripción completa

Detalles Bibliográficos
Autor principal: Rossi, Vincent M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882575/
https://www.ncbi.nlm.nih.gov/pubmed/36713245
Descripción
Sumario:A fundamental, Quantum Mechanical description of photoactivation of a generic photosensitizer and the ensuing transfer of energy to endogenous oxygen as part of the Type II pathway to photodamage during photodynamic therapy (PDT) is presented. The PS and molecular oxygen are approximated as two-electron molecules. Conservation of energy and of angular momenta of the two molecule system are abided via selection rules throughout the four-stage process, including initial states, absorption of a photon by the PS, conversion of the PS to an excited spin triplet via intersystem crossing (ISC), and the transition of molecular oxygen to an excited spin singlet state via a Triplet-Triplet Exchange of electrons with the PS. The provided description of photosensitization will provide students and researchers with a fundamental introduction to PDT, while offering the broader population of Quantum Mechanics and Physical Chemistry students an advanced example of quantum systems in an applied, medical context.