Cargando…
Evolutionary mismatch and the role of GxE interactions in human disease
Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of “lifestyle” diseases that were rare throughout human history but are now common. A k...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882586/ https://www.ncbi.nlm.nih.gov/pubmed/36713247 |
_version_ | 1784879322352320512 |
---|---|
author | Lea, Amanda J. Clark, Andrew G. Dahl, Andrew W. Devinsky, Orrin Garcia, Angela R. Golden, Christopher D. Kamau, Joseph Kraft, Thomas S. Lim, Yvonne A. L. Martins, Dino Mogoi, Donald Pajukanta, Paivi Perry, George Pontzer, Herman Trumble, Benjamin C. Urlacher, Samuel S. Venkataraman, Vivek V. Wallace, Ian J. Gurven, Michael Lieberman, Daniel Ayroles, Julien F. |
author_facet | Lea, Amanda J. Clark, Andrew G. Dahl, Andrew W. Devinsky, Orrin Garcia, Angela R. Golden, Christopher D. Kamau, Joseph Kraft, Thomas S. Lim, Yvonne A. L. Martins, Dino Mogoi, Donald Pajukanta, Paivi Perry, George Pontzer, Herman Trumble, Benjamin C. Urlacher, Samuel S. Venkataraman, Vivek V. Wallace, Ian J. Gurven, Michael Lieberman, Daniel Ayroles, Julien F. |
author_sort | Lea, Amanda J. |
collection | PubMed |
description | Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of “lifestyle” diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology—the evolutionary mismatch hypothesis—seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be “mismatched” and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit “genotype by environment” (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more “matched” with their recent evolutionary history to those that are more “mismatched”. These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts. |
format | Online Article Text |
id | pubmed-9882586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-98825862023-01-28 Evolutionary mismatch and the role of GxE interactions in human disease Lea, Amanda J. Clark, Andrew G. Dahl, Andrew W. Devinsky, Orrin Garcia, Angela R. Golden, Christopher D. Kamau, Joseph Kraft, Thomas S. Lim, Yvonne A. L. Martins, Dino Mogoi, Donald Pajukanta, Paivi Perry, George Pontzer, Herman Trumble, Benjamin C. Urlacher, Samuel S. Venkataraman, Vivek V. Wallace, Ian J. Gurven, Michael Lieberman, Daniel Ayroles, Julien F. ArXiv Article Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of “lifestyle” diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology—the evolutionary mismatch hypothesis—seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be “mismatched” and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit “genotype by environment” (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more “matched” with their recent evolutionary history to those that are more “mismatched”. These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts. Cornell University 2023-02-13 /pmc/articles/PMC9882586/ /pubmed/36713247 Text en https://creativecommons.org/licenses/by-nc-sa/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. |
spellingShingle | Article Lea, Amanda J. Clark, Andrew G. Dahl, Andrew W. Devinsky, Orrin Garcia, Angela R. Golden, Christopher D. Kamau, Joseph Kraft, Thomas S. Lim, Yvonne A. L. Martins, Dino Mogoi, Donald Pajukanta, Paivi Perry, George Pontzer, Herman Trumble, Benjamin C. Urlacher, Samuel S. Venkataraman, Vivek V. Wallace, Ian J. Gurven, Michael Lieberman, Daniel Ayroles, Julien F. Evolutionary mismatch and the role of GxE interactions in human disease |
title | Evolutionary mismatch and the role of GxE interactions in human disease |
title_full | Evolutionary mismatch and the role of GxE interactions in human disease |
title_fullStr | Evolutionary mismatch and the role of GxE interactions in human disease |
title_full_unstemmed | Evolutionary mismatch and the role of GxE interactions in human disease |
title_short | Evolutionary mismatch and the role of GxE interactions in human disease |
title_sort | evolutionary mismatch and the role of gxe interactions in human disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882586/ https://www.ncbi.nlm.nih.gov/pubmed/36713247 |
work_keys_str_mv | AT leaamandaj evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT clarkandrewg evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT dahlandreww evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT devinskyorrin evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT garciaangelar evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT goldenchristopherd evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT kamaujoseph evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT kraftthomass evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT limyvonneal evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT martinsdino evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT mogoidonald evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT pajukantapaivi evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT perrygeorge evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT pontzerherman evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT trumblebenjaminc evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT urlachersamuels evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT venkataramanvivekv evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT wallaceianj evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT gurvenmichael evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT liebermandaniel evolutionarymismatchandtheroleofgxeinteractionsinhumandisease AT ayrolesjulienf evolutionarymismatchandtheroleofgxeinteractionsinhumandisease |