Cargando…
Predictive Models and Features of Patient Mortality across Dementia Types
Dementia care is challenging due to the divergent trajectories in disease progression and outcomes. Predictive models are needed to identify patients at risk of near-term mortality. Here, we developed machine learning models predicting survival using a dataset of 45,275 unique participants and 163,7...
Autores principales: | Zhang, Jimmy, Song, Luo, Chan, Kwun, Miller, Zachary, Huang, Kuan-lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882612/ https://www.ncbi.nlm.nih.gov/pubmed/36711767 http://dx.doi.org/10.21203/rs.3.rs-2350961/v1 |
Ejemplares similares
-
Sociodemographic and clinical features predictive of SARS-CoV-2 test positivity across healthcare visit-types
por: Phuong, Jimmy, et al.
Publicado: (2021) -
Prediction of Response to Radiotherapy by Characterizing the Transcriptomic Features in Clinical Tumor Samples across 15 Cancer Types
por: Xu, Yu, et al.
Publicado: (2022) -
Association of depression with mortality in nationwide twins: The mediating role of dementia
por: Yang, Wenzhe, et al.
Publicado: (2022) -
Transcriptomic Features of T Cell-Barren Tumors Are Conserved Across Diverse Tumor Types
por: Routh, Eric D., et al.
Publicado: (2020) -
Predicting mortality in patients diagnosed with advanced dementia presenting at an acute care hospital: the PROgnostic Model for Advanced DEmentia (PRO-MADE)
por: Kaur, Palvinder, et al.
Publicado: (2023)