Cargando…

Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model

OBJECTIVE: This study proposes to identify and validate weighted sensor stream signatures that predict near-term risk of a major depressive episode and future mood among healthcare workers in Kenya. APPROACH: The study will deploy a mobile app platform and use novel data science analytic approaches...

Descripción completa

Detalles Bibliográficos
Autores principales: Njoroge, Willie, Maina, Rachel, Elena, Frank, Atwoli, Lukoye, Wu, Zhenke, Ngugi, Anthony, Sen, Srijan, Wang, Jian, Wong, Stephen, Baker, Jessica, Haus, Eileen, Khakali, Linda, Aballa, Andrew, Orwa, James, Nyongesa, Moses, Merali, Zul, Akbar, Karim, Abubakar, Amina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882671/
https://www.ncbi.nlm.nih.gov/pubmed/36711522
http://dx.doi.org/10.21203/rs.3.rs-2458763/v1
_version_ 1784879343312306176
author Njoroge, Willie
Maina, Rachel
Elena, Frank
Atwoli, Lukoye
Wu, Zhenke
Ngugi, Anthony
Sen, Srijan
Wang, Jian
Wong, Stephen
Baker, Jessica
Haus, Eileen
Khakali, Linda
Aballa, Andrew
Orwa, James
Nyongesa, Moses
Merali, Zul
Akbar, Karim
Abubakar, Amina
author_facet Njoroge, Willie
Maina, Rachel
Elena, Frank
Atwoli, Lukoye
Wu, Zhenke
Ngugi, Anthony
Sen, Srijan
Wang, Jian
Wong, Stephen
Baker, Jessica
Haus, Eileen
Khakali, Linda
Aballa, Andrew
Orwa, James
Nyongesa, Moses
Merali, Zul
Akbar, Karim
Abubakar, Amina
author_sort Njoroge, Willie
collection PubMed
description OBJECTIVE: This study proposes to identify and validate weighted sensor stream signatures that predict near-term risk of a major depressive episode and future mood among healthcare workers in Kenya. APPROACH: The study will deploy a mobile app platform and use novel data science analytic approaches (Artificial Intelligence and Machine Learning) to identifying predictors of mental health disorders among 500 randomly sampled healthcare workers from five healthcare facilities in Nairobi, Kenya. EXPECTATION: This study will lay the basis for creating agile and scalable systems for rapid diagnostics that could inform precise interventions for mitigating depression and ensure a healthy, resilient healthcare workforce to develop sustainable economic growth in Kenya, East Africa, and ultimately neighboring countries in sub-Saharan Africa. This protocol paper provides an opportunity to share the planned study implementation methods and approaches. CONCLUSION: A mobile technology platform that is scalable and can be used to understand and improve mental health outcomes is of critical importance.
format Online
Article
Text
id pubmed-9882671
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-98826712023-01-28 Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model Njoroge, Willie Maina, Rachel Elena, Frank Atwoli, Lukoye Wu, Zhenke Ngugi, Anthony Sen, Srijan Wang, Jian Wong, Stephen Baker, Jessica Haus, Eileen Khakali, Linda Aballa, Andrew Orwa, James Nyongesa, Moses Merali, Zul Akbar, Karim Abubakar, Amina Res Sq Article OBJECTIVE: This study proposes to identify and validate weighted sensor stream signatures that predict near-term risk of a major depressive episode and future mood among healthcare workers in Kenya. APPROACH: The study will deploy a mobile app platform and use novel data science analytic approaches (Artificial Intelligence and Machine Learning) to identifying predictors of mental health disorders among 500 randomly sampled healthcare workers from five healthcare facilities in Nairobi, Kenya. EXPECTATION: This study will lay the basis for creating agile and scalable systems for rapid diagnostics that could inform precise interventions for mitigating depression and ensure a healthy, resilient healthcare workforce to develop sustainable economic growth in Kenya, East Africa, and ultimately neighboring countries in sub-Saharan Africa. This protocol paper provides an opportunity to share the planned study implementation methods and approaches. CONCLUSION: A mobile technology platform that is scalable and can be used to understand and improve mental health outcomes is of critical importance. American Journal Experts 2023-01-16 /pmc/articles/PMC9882671/ /pubmed/36711522 http://dx.doi.org/10.21203/rs.3.rs-2458763/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Njoroge, Willie
Maina, Rachel
Elena, Frank
Atwoli, Lukoye
Wu, Zhenke
Ngugi, Anthony
Sen, Srijan
Wang, Jian
Wong, Stephen
Baker, Jessica
Haus, Eileen
Khakali, Linda
Aballa, Andrew
Orwa, James
Nyongesa, Moses
Merali, Zul
Akbar, Karim
Abubakar, Amina
Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title_full Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title_fullStr Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title_full_unstemmed Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title_short Use of Mobile Technology to Identify Behavioral Mechanisms Linked to Mental Health Outcomes In Kenya: Protocol for Development and Validation of a Predictive Model
title_sort use of mobile technology to identify behavioral mechanisms linked to mental health outcomes in kenya: protocol for development and validation of a predictive model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882671/
https://www.ncbi.nlm.nih.gov/pubmed/36711522
http://dx.doi.org/10.21203/rs.3.rs-2458763/v1
work_keys_str_mv AT njorogewillie useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT mainarachel useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT elenafrank useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT atwolilukoye useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT wuzhenke useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT ngugianthony useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT sensrijan useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT wangjian useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT wongstephen useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT bakerjessica useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT hauseileen useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT khakalilinda useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT aballaandrew useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT orwajames useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT nyongesamoses useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT meralizul useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT akbarkarim useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel
AT abubakaramina useofmobiletechnologytoidentifybehavioralmechanismslinkedtomentalhealthoutcomesinkenyaprotocolfordevelopmentandvalidationofapredictivemodel