Cargando…
B-cells Drive Response to PD-1 Blockade in Glioblastoma Upon Neutralization of TGFβ-mediated Immunosuppression
Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and mela...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882679/ https://www.ncbi.nlm.nih.gov/pubmed/36711497 http://dx.doi.org/10.21203/rs.3.rs-2399170/v1 |
Sumario: | Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation. We also identified TGFβ-1/TGFβ receptor-2 interaction as a crucial modulator of B-cell suppression. Treatment of glioblastoma patients with pembrolizumab induced expression of B-cell checkpoint molecules and TGFβ-receptor-2. Abrogation of TGFβ using different conditional knockouts expanded germinal-center-like intratumoral B-cells, enhancing immune-checkpoint-blockade efficacy. Finally, blocking αVβ8 integrin (which controls the release of active TGFβ) and PD-1 significantly increased B-cell-dependent animal survival and immunological memory. Our study highlights the importance of intratumoral B-cell immunity and a remodeled approach to boost the effects of immunotherapy against brain tumors. |
---|