Cargando…
Local conditions matter: Minimal and variable effects of soil disturbance on microbial communities and functions in European vineyards
Soil tillage or herbicide applications are commonly used in agriculture for weed control. These measures may also represent a disturbance for soil microbial communities and their functions. However, the generality of response patterns of microbial communities and functions to disturbance have rarely...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882891/ https://www.ncbi.nlm.nih.gov/pubmed/36706082 http://dx.doi.org/10.1371/journal.pone.0280516 |
Sumario: | Soil tillage or herbicide applications are commonly used in agriculture for weed control. These measures may also represent a disturbance for soil microbial communities and their functions. However, the generality of response patterns of microbial communities and functions to disturbance have rarely been studied at large geographical scales. We investigated how a soil disturbance gradient (low, intermediate, high), realized by either tillage or herbicide application, affects diversity and composition of soil bacterial and fungal communities as well as soil functions in vineyards across five European countries. Microbial alpha-diversity metrics responded to soil disturbance sporadically, but inconsistently across countries. Increasing soil disturbance changed soil microbial community composition at the European level. However, the effects of soil disturbance on the variation of microbial communities were smaller compared to the effects of location and soil covariates. Microbial respiration was consistently impaired by soil disturbance, while effects on decomposition of organic substrates were inconsistent and showed positive and negative responses depending on the respective country. Therefore, we conclude that it is difficult to extrapolate results from one locality to others because microbial communities and environmental conditions vary strongly over larger geographical scales. |
---|