Cargando…

Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis

Ameloblastoma is a highly aggressive odontogenic tumor, and its pathogenesis is associated with many participating genes. OBJECTIVE: We aimed to identify and validate new critical genes of conventional ameloblastoma using microarray and bioinformatics analysis. METHODOLOGY: Gene expression microarra...

Descripción completa

Detalles Bibliográficos
Autores principales: JACINTO-ALEMÁN, Luis Fernando, PORTILLA-ROBERTSON, Javier, LEYVA-HUERTA, Elba Rosa, RAMÍREZ-JARQUÍN, Josué Orlando, VILLANUEVA-SÁNCHEZ, Francisco Germán
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Faculdade De Odontologia De Bauru - USP 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882959/
http://dx.doi.org/10.1590/1678-7757-2022-0308
_version_ 1784879406685093888
author JACINTO-ALEMÁN, Luis Fernando
PORTILLA-ROBERTSON, Javier
LEYVA-HUERTA, Elba Rosa
RAMÍREZ-JARQUÍN, Josué Orlando
VILLANUEVA-SÁNCHEZ, Francisco Germán
author_facet JACINTO-ALEMÁN, Luis Fernando
PORTILLA-ROBERTSON, Javier
LEYVA-HUERTA, Elba Rosa
RAMÍREZ-JARQUÍN, Josué Orlando
VILLANUEVA-SÁNCHEZ, Francisco Germán
author_sort JACINTO-ALEMÁN, Luis Fernando
collection PubMed
description Ameloblastoma is a highly aggressive odontogenic tumor, and its pathogenesis is associated with many participating genes. OBJECTIVE: We aimed to identify and validate new critical genes of conventional ameloblastoma using microarray and bioinformatics analysis. METHODOLOGY: Gene expression microarray and bioinformatic analysis were performed using CHIP H10KA and DAVID software for enrichment. Protein-protein interactions (PPI) were visualized using STRING-Cytoscape with MCODE plugin, followed by Kaplan-Meier and GEPIA analyses that were used for the candidate’s postulation. RT-qPCR and IHC assays were performed to validate the bioinformatic approach. RESULTS: 376 upregulated genes were identified. PPI analysis revealed 14 genes that were validated by Kaplan-Meier and GEPIA resulting in PDGFA and IL2RA as candidate genes. The RT-qPCR analysis confirmed their intense expression. Immunohistochemistry analysis showed that PDGFA expression is parenchyma located. CONCLUSION: With bioinformatics methods, we can identify upregulated genes in conventional ameloblastoma, and with RT-qPCR and immunoexpression analysis validate that PDGFA could be a more specific and localized therapeutic target.
format Online
Article
Text
id pubmed-9882959
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Faculdade De Odontologia De Bauru - USP
record_format MEDLINE/PubMed
spelling pubmed-98829592023-01-29 Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis JACINTO-ALEMÁN, Luis Fernando PORTILLA-ROBERTSON, Javier LEYVA-HUERTA, Elba Rosa RAMÍREZ-JARQUÍN, Josué Orlando VILLANUEVA-SÁNCHEZ, Francisco Germán J Appl Oral Sci Original Article Ameloblastoma is a highly aggressive odontogenic tumor, and its pathogenesis is associated with many participating genes. OBJECTIVE: We aimed to identify and validate new critical genes of conventional ameloblastoma using microarray and bioinformatics analysis. METHODOLOGY: Gene expression microarray and bioinformatic analysis were performed using CHIP H10KA and DAVID software for enrichment. Protein-protein interactions (PPI) were visualized using STRING-Cytoscape with MCODE plugin, followed by Kaplan-Meier and GEPIA analyses that were used for the candidate’s postulation. RT-qPCR and IHC assays were performed to validate the bioinformatic approach. RESULTS: 376 upregulated genes were identified. PPI analysis revealed 14 genes that were validated by Kaplan-Meier and GEPIA resulting in PDGFA and IL2RA as candidate genes. The RT-qPCR analysis confirmed their intense expression. Immunohistochemistry analysis showed that PDGFA expression is parenchyma located. CONCLUSION: With bioinformatics methods, we can identify upregulated genes in conventional ameloblastoma, and with RT-qPCR and immunoexpression analysis validate that PDGFA could be a more specific and localized therapeutic target. Faculdade De Odontologia De Bauru - USP 2023-01-23 /pmc/articles/PMC9882959/ http://dx.doi.org/10.1590/1678-7757-2022-0308 Text en https://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
JACINTO-ALEMÁN, Luis Fernando
PORTILLA-ROBERTSON, Javier
LEYVA-HUERTA, Elba Rosa
RAMÍREZ-JARQUÍN, Josué Orlando
VILLANUEVA-SÁNCHEZ, Francisco Germán
Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title_full Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title_fullStr Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title_full_unstemmed Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title_short Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
title_sort microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882959/
http://dx.doi.org/10.1590/1678-7757-2022-0308
work_keys_str_mv AT jacintoalemanluisfernando microarrayandbioinformaticanalysisofconventionalameloblastomaanobservationalanalysis
AT portillarobertsonjavier microarrayandbioinformaticanalysisofconventionalameloblastomaanobservationalanalysis
AT leyvahuertaelbarosa microarrayandbioinformaticanalysisofconventionalameloblastomaanobservationalanalysis
AT ramirezjarquinjosueorlando microarrayandbioinformaticanalysisofconventionalameloblastomaanobservationalanalysis
AT villanuevasanchezfranciscogerman microarrayandbioinformaticanalysisofconventionalameloblastomaanobservationalanalysis