Cargando…
A 6G meta-device for 3D varifocal
The sixth-generation (6G) communication technology is being developed in full swing and is expected to be faster and better than the fifth generation. The precise information transfer directivity and the concentration of signal strength are the key topics of 6G technology. We report the synthetic ph...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883050/ https://www.ncbi.nlm.nih.gov/pubmed/36706183 http://dx.doi.org/10.1126/sciadv.adf8478 |
Sumario: | The sixth-generation (6G) communication technology is being developed in full swing and is expected to be faster and better than the fifth generation. The precise information transfer directivity and the concentration of signal strength are the key topics of 6G technology. We report the synthetic phase design of rotary doublet Airy beam and triplet Gaussian beam varifocal meta-devices to fully control the terahertz beam’s propagation direction and coverage area. The focusing spot can be delivered to arbitrary positions in a two-dimensional plane or a three-dimensional space. The highly concentrated signal can be delivered to a specific position, and the transmission direction can be adjusted freely to enable secure, flexible, and high-directivity 6G communication systems. This technology avoids the high costs associated with extensive use of active components. 6G communication systems, wireless power transfer, zoom imaging, and remote sensing will benefit from large-scale adoption of such a technology. |
---|