Cargando…
Temporal synchronization elicits enhancement of binocular vision functions
Integration of information over the CNS is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiote...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883208/ https://www.ncbi.nlm.nih.gov/pubmed/36718367 http://dx.doi.org/10.1016/j.isci.2023.105960 |
_version_ | 1784879459065659392 |
---|---|
author | Eisen-Enosh, Auria Farah, Nairouz Polat, Uri Mandel, Yossi |
author_facet | Eisen-Enosh, Auria Farah, Nairouz Polat, Uri Mandel, Yossi |
author_sort | Eisen-Enosh, Auria |
collection | PubMed |
description | Integration of information over the CNS is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found that the re-synchronization of the ocular input elicited a significant improvement in visual functions, and binocular functions, such as binocular summation and stereopsis, were regained. This phenomenon was also evident in neurophysiological measures. Our results can shed light on other neural processing aspects and might also have translational relevance for the field of training, rehabilitation, and perceptual learning. |
format | Online Article Text |
id | pubmed-9883208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98832082023-01-29 Temporal synchronization elicits enhancement of binocular vision functions Eisen-Enosh, Auria Farah, Nairouz Polat, Uri Mandel, Yossi iScience Article Integration of information over the CNS is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found that the re-synchronization of the ocular input elicited a significant improvement in visual functions, and binocular functions, such as binocular summation and stereopsis, were regained. This phenomenon was also evident in neurophysiological measures. Our results can shed light on other neural processing aspects and might also have translational relevance for the field of training, rehabilitation, and perceptual learning. Elsevier 2023-01-12 /pmc/articles/PMC9883208/ /pubmed/36718367 http://dx.doi.org/10.1016/j.isci.2023.105960 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Eisen-Enosh, Auria Farah, Nairouz Polat, Uri Mandel, Yossi Temporal synchronization elicits enhancement of binocular vision functions |
title | Temporal synchronization elicits enhancement of binocular vision functions |
title_full | Temporal synchronization elicits enhancement of binocular vision functions |
title_fullStr | Temporal synchronization elicits enhancement of binocular vision functions |
title_full_unstemmed | Temporal synchronization elicits enhancement of binocular vision functions |
title_short | Temporal synchronization elicits enhancement of binocular vision functions |
title_sort | temporal synchronization elicits enhancement of binocular vision functions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883208/ https://www.ncbi.nlm.nih.gov/pubmed/36718367 http://dx.doi.org/10.1016/j.isci.2023.105960 |
work_keys_str_mv | AT eisenenoshauria temporalsynchronizationelicitsenhancementofbinocularvisionfunctions AT farahnairouz temporalsynchronizationelicitsenhancementofbinocularvisionfunctions AT polaturi temporalsynchronizationelicitsenhancementofbinocularvisionfunctions AT mandelyossi temporalsynchronizationelicitsenhancementofbinocularvisionfunctions |