Cargando…
Connections Between Numerical Algorithms for PDEs and Neural Networks
We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural architectures. Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks. Besides structural insights, we provide concrete...
Autores principales: | Alt, Tobias, Schrader, Karl, Augustin, Matthias, Peter, Pascal, Weickert, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883332/ https://www.ncbi.nlm.nih.gov/pubmed/36721706 http://dx.doi.org/10.1007/s10851-022-01106-x |
Ejemplares similares
-
Designing rotationally invariant neural networks from PDEs and variational methods
por: Alt, Tobias, et al.
Publicado: (2022) -
Solving Numerical PDEs
por: Formaggia, Luca, et al.
Publicado: (2012) -
Numerical Algorithm Based on Haar-Sinc Collocation Method for Solving the Hyperbolic PDEs
por: Pirkhedri, A., et al.
Publicado: (2014) -
Formal algorithmic elimination for PDEs
por: Robertz, Daniel
Publicado: (2014) -
Numerical methods for PDEs: state of the art techniques
por: Pietro, Daniele, et al.
Publicado: (2018)