Cargando…

Log-convexity and the overpartition function

Let [Formula: see text] denote the overpartition function. In this paper, we obtain an inequality for the sequence [Formula: see text] which states that [Formula: see text] where [Formula: see text] is a non-negative real number, [Formula: see text] is a positive integer depending on [Formula: see t...

Descripción completa

Detalles Bibliográficos
Autor principal: Mukherjee, Gargi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883361/
https://www.ncbi.nlm.nih.gov/pubmed/36721669
http://dx.doi.org/10.1007/s11139-022-00578-0
Descripción
Sumario:Let [Formula: see text] denote the overpartition function. In this paper, we obtain an inequality for the sequence [Formula: see text] which states that [Formula: see text] where [Formula: see text] is a non-negative real number, [Formula: see text] is a positive integer depending on [Formula: see text] , and [Formula: see text] is the difference operator with respect to n. This inequality consequently implies [Formula: see text] -convexity of [Formula: see text] and [Formula: see text] . Moreover, it also establishes the asymptotic growth of [Formula: see text] by showing [Formula: see text]