Cargando…
Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images
Advances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune mic...
Autores principales: | Huang, Zhi, Shao, Wei, Han, Zhi, Alkashash, Ahmad Mahmoud, De la Sancha, Carlo, Parwani, Anil V., Nitta, Hiroaki, Hou, Yanjun, Wang, Tongxin, Salama, Paul, Rizkalla, Maher, Zhang, Jie, Huang, Kun, Li, Zaibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883475/ https://www.ncbi.nlm.nih.gov/pubmed/36707660 http://dx.doi.org/10.1038/s41698-023-00352-5 |
Ejemplares similares
-
TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining
por: Huang, Zhi, et al.
Publicado: (2021) -
Rules of engagement: Promoting academic-industry partnership in the era of digital pathology and artificial intelligence
por: Pantanowitz, Liron, et al.
Publicado: (2022) -
Artificial intelligence in diagnostic pathology
por: Shafi, Saba, et al.
Publicado: (2023) -
HER2 Intratumoral Heterogeneity in Breast Cancer, an Evolving Concept
por: Hou, Yanjun, et al.
Publicado: (2023) -
Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment
por: Janssen, Boris V., et al.
Publicado: (2021)