Cargando…

Training drives turnover rates in racehorse proximal sesamoid bones

Focal bone lesions are often found prior to clinically relevant stress-fractures. Lesions are characterized by low bone volume fraction, low mineral density, and high levels of microdamage and are hypothesized to develop when bone tissue cannot sufficiently respond to damaging loading. It is difficu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaffer, Sarah K., Stover, Susan M., Fyhrie, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883508/
https://www.ncbi.nlm.nih.gov/pubmed/36707527
http://dx.doi.org/10.1038/s41598-022-26027-y
Descripción
Sumario:Focal bone lesions are often found prior to clinically relevant stress-fractures. Lesions are characterized by low bone volume fraction, low mineral density, and high levels of microdamage and are hypothesized to develop when bone tissue cannot sufficiently respond to damaging loading. It is difficult to determine how exercise drives the formation of these lesions because bone responds to mechanical loading and repairs damage. In this study, we derive steady-state rate constants for a compartment model of bone turnover using morphometric data from fractured and non-fractured racehorse proximal sesamoid bones (PSBs) and relate rate constants to racing-speed exercise data. Fractured PSBs had a subchondral focus of bone turnover and microdamage typical of lesions that develop prior to fracture. We determined steady-state model rate constants at the lesion site and an internal region without microdamage using bone volume fraction, tissue mineral density, and microdamage area fraction measurements. The derived undamaged bone resorption rate, damage formation rate, and osteoid formation rate had significant robust regression relationships to exercise intensity (rate) variables, layup (time out of exercise), and exercise 2–10 months before death. However, the direction of these relationships varied between the damaged (lesion) and non-damaged regions, reflecting that the biological response to damaging-loading differs from the response to non-damaging loading.