Cargando…

Establishment and evaluation of nomogram for predicting intraventricular hemorrhage in neonatal acute respiratory distress syndrome

BACKGROUND: Intraventricular hemorrhage (IVH) is the most common type of brain injury in newborns, especially in newborns with Neonatal acute respiratory distress syndrome (ARDS). IVH can cause brain parenchyma damage and long-term neurological sequelae in children. Early identification and preventi...

Descripción completa

Detalles Bibliográficos
Autores principales: Arkin, Nurbiya, Wang, Yanmei, Wang, Le
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883912/
https://www.ncbi.nlm.nih.gov/pubmed/36707776
http://dx.doi.org/10.1186/s12887-023-03853-1
Descripción
Sumario:BACKGROUND: Intraventricular hemorrhage (IVH) is the most common type of brain injury in newborns, especially in newborns with Neonatal acute respiratory distress syndrome (ARDS). IVH can cause brain parenchyma damage and long-term neurological sequelae in children. Early identification and prevention of sequelae are essential. This study aims to establish a predictive nomogram for the early prediction of IVH in newborns with ARDS. METHODS: From 2019 to 2021, we collected data from 222 infants diagnosed with ARDS in the Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University. Infants have been randomly assigned to the training set (n = 161) or the validation set (n = 61) at a ratio of 7:3. Variables were screened using the Least Absolute Contract and Selection Operator (LASSO) regression to create a risk model for IVH in infants with ARDS. The variables chosen in the LASSO regression model were used to establish the prediction model using multivariate logistic regression analysis. RESULTS: We recognized 4 variables as independent risk factors for IVH in newborns with ARDS via LASSO analysis, consisting of premature rupture of membranes (PROM), pulmonary surfactant (PS) dosage, PH(1) and Arterial partial pressure of oxygen (PaO(2)(1)). The C-Index for this dataset is 0.868 (95% CI: 0.837–0.940) and the C index in bootstrap verification is 0.852 respectively. The analysis of the decision curve shows that the model can significantly improve clinical efficiency in predicting IVH. We also provide a website based on the model and open it to users for free, so that the model can be better applied to clinical practice. CONCLUSION: In conclusion, the nomogram based on 4 factors shows good identification, calibration and clinical practicability. Our nomographs can help clinicians make clinical decisions, screen high-risk ARDS newborns, and facilitate early identification and management of IVH patients.