Cargando…

Molecularly imprinted miniature electrochemical biosensor for SARS-CoV-2 spike protein based on Au nanoparticles and reduced graphene oxide modified acupuncture needle

Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), re...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xu, Yin, Zheng-Zhi, Zheng, Guojun, Zhou, Min, Zhang, Hongyu, Li, Junyao, Cai, Wenrong, Kong, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883973/
https://www.ncbi.nlm.nih.gov/pubmed/36716516
http://dx.doi.org/10.1016/j.bioelechem.2023.108375
Descripción
Sumario:Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), reduced graphene oxide (rGO), poly(methylene blue)/poly(ionic liquids) and poly(ionic liquids) were successively electrodeposited onto the pinpoint of an acupuncture needle (AN). The molecularly imprinted miniature biosensor was obtained after the template of SARS-CoV-2-S protein was removed, which could be used for sensitive detection of SARS-CoV-2-S protein. The linear range and limit of detection (LOD) were 0.1 ∼ 1000 ng mL(−1) and 38 pg mL(−1), respectively, which were superior to other molecularly imprinted biosensors previously reported. The developed miniature biosensor also exhibited high specificity and stability. The reliability of the biosensor was evaluated by the detection of SARS-CoV-2-S protein in clinical serum samples.