Cargando…

Combined Anti-Angiogenic and Anti-Inflammatory Nanoformulation for Effective Treatment of Ocular Vascular Diseases

BACKGROUND: Ocular vascular diseases are the major causes of visual impairment, which are characterized by retinal vascular dysfunction and robust inflammatory responses. Traditional anti-angiogenic or anti-inflammatory drugs still have limitations due to the short-acting effects. To improve the ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jianguo, Nie, Huiling, Pan, Panpan, Jiang, Qin, Liu, Chang, Wang, Min, Deng, Yonghui, Yan, Biao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884055/
https://www.ncbi.nlm.nih.gov/pubmed/36718193
http://dx.doi.org/10.2147/IJN.S387428
Descripción
Sumario:BACKGROUND: Ocular vascular diseases are the major causes of visual impairment, which are characterized by retinal vascular dysfunction and robust inflammatory responses. Traditional anti-angiogenic or anti-inflammatory drugs still have limitations due to the short-acting effects. To improve the anti-angiogenic or anti-inflammatory efficiency, a dual-drug nanocomposite formulation was proposed for combined anti-angiogenic and anti-inflammatory treatment of ocular vascular diseases. METHODS: : CBC-MCC@hMSN(SM) complex nanoformulation was prepared by integrating conbercept (CBC, an anti-angiogenic drug) and MCC950 (MCC, an inhibitor of inflammation) into the surface-modified hollow mesoporous silica nanoparticles (hMSN(SM)). CBC-MCC@hMSN(SM) complex nanoformulation was then characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, zeta potentials, and nitrogen adsorption-desorption measurement. CBC and MCC release profile, cytotoxicity, tissue toxicity, anti-angiogenic effects, and anti-inflammatory effects of CBC-MCC@hMSN(SM) were estimated using the in vitro and in vivo experiments. RESULTS:  CBC-MCC@hMSN(SM) complex had no obvious cytotoxicity and tissue toxicity and did not cause a detectable ocular inflammatory responses. CBC-MCC@hMSN(SM) complex was more effective than free CBC or MCC in suppressing endothelial angiogenic effects and inflammatory responses in vitro. A single intraocular injection of CBC-MCC@hMSN(SM) complex potently suppressed diabetes-induced retinal vascular dysfunction, choroidal neovascularization, and inflammatory responses for up to 6 months. CONCLUSION: : Combined CBC and MCC nanoformulation provides a promising strategy for sustained suppression of pathological angiogenesis and inflammatory responses to improve the treatment outcomes of ocular vascular diseases.