Cargando…
Optical Modeling of Plasmonic Nanoparticles with Electronically Depleted Layers
[Image: see text] Doped metal oxide (MO) nanocrystals (NCs) are well-known for the localized surface plasmon resonance in the infrared range generated by free electrons in the conduction band of the material. Owing to the intimate connection between plasmonic features and the NC’s carrier density pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884077/ https://www.ncbi.nlm.nih.gov/pubmed/36721771 http://dx.doi.org/10.1021/acs.jpcc.2c05582 |
_version_ | 1784879641404637184 |
---|---|
author | Petrini, Nicolò Ghini, Michele Curreli, Nicola Kriegel, Ilka |
author_facet | Petrini, Nicolò Ghini, Michele Curreli, Nicola Kriegel, Ilka |
author_sort | Petrini, Nicolò |
collection | PubMed |
description | [Image: see text] Doped metal oxide (MO) nanocrystals (NCs) are well-known for the localized surface plasmon resonance in the infrared range generated by free electrons in the conduction band of the material. Owing to the intimate connection between plasmonic features and the NC’s carrier density profile, proper modeling can unveil the underlying electronic structure. The carrier density profile in MO NCs is characterized by the presence of an electronically depleted layer as a result of the Fermi level pinning at the surface of the NC. Moreover, the carrier profile can be spatially engineered by tuning the dopant concentrations in core–shell architectures, generating a rich plethora of plasmonic features. In this work, we systematically studied the influence of the simulation parameters used for optical modeling of representative experimental absorption spectra by implementing multilayer models. We highlight in particular the importance of minimizing the fit parameters by support of experimental results and the importance of interparameter relationships. We show that, in all cases investigated, the depletion layer is fundamental to correctly describe the continuous spectra evolution. We foresee that this multilayer model can be used to design the optoelectronic properties of core–shell systems in the framework of energy band and depletion layer engineering. |
format | Online Article Text |
id | pubmed-9884077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-98840772023-01-29 Optical Modeling of Plasmonic Nanoparticles with Electronically Depleted Layers Petrini, Nicolò Ghini, Michele Curreli, Nicola Kriegel, Ilka J Phys Chem C Nanomater Interfaces [Image: see text] Doped metal oxide (MO) nanocrystals (NCs) are well-known for the localized surface plasmon resonance in the infrared range generated by free electrons in the conduction band of the material. Owing to the intimate connection between plasmonic features and the NC’s carrier density profile, proper modeling can unveil the underlying electronic structure. The carrier density profile in MO NCs is characterized by the presence of an electronically depleted layer as a result of the Fermi level pinning at the surface of the NC. Moreover, the carrier profile can be spatially engineered by tuning the dopant concentrations in core–shell architectures, generating a rich plethora of plasmonic features. In this work, we systematically studied the influence of the simulation parameters used for optical modeling of representative experimental absorption spectra by implementing multilayer models. We highlight in particular the importance of minimizing the fit parameters by support of experimental results and the importance of interparameter relationships. We show that, in all cases investigated, the depletion layer is fundamental to correctly describe the continuous spectra evolution. We foresee that this multilayer model can be used to design the optoelectronic properties of core–shell systems in the framework of energy band and depletion layer engineering. American Chemical Society 2023-01-11 /pmc/articles/PMC9884077/ /pubmed/36721771 http://dx.doi.org/10.1021/acs.jpcc.2c05582 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Petrini, Nicolò Ghini, Michele Curreli, Nicola Kriegel, Ilka Optical Modeling of Plasmonic Nanoparticles with Electronically Depleted Layers |
title | Optical Modeling
of Plasmonic Nanoparticles with Electronically
Depleted Layers |
title_full | Optical Modeling
of Plasmonic Nanoparticles with Electronically
Depleted Layers |
title_fullStr | Optical Modeling
of Plasmonic Nanoparticles with Electronically
Depleted Layers |
title_full_unstemmed | Optical Modeling
of Plasmonic Nanoparticles with Electronically
Depleted Layers |
title_short | Optical Modeling
of Plasmonic Nanoparticles with Electronically
Depleted Layers |
title_sort | optical modeling
of plasmonic nanoparticles with electronically
depleted layers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884077/ https://www.ncbi.nlm.nih.gov/pubmed/36721771 http://dx.doi.org/10.1021/acs.jpcc.2c05582 |
work_keys_str_mv | AT petrininicolo opticalmodelingofplasmonicnanoparticleswithelectronicallydepletedlayers AT ghinimichele opticalmodelingofplasmonicnanoparticleswithelectronicallydepletedlayers AT currelinicola opticalmodelingofplasmonicnanoparticleswithelectronicallydepletedlayers AT kriegelilka opticalmodelingofplasmonicnanoparticleswithelectronicallydepletedlayers |