Cargando…

Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach

[Image: see text] The performance of different density functional tight binding (DFTB) methods for the description of six increasingly complex metal–organic framework (MOF) compounds have been assessed. In particular the self-consistent charge density functional tight binding (SCC DFTB) approach uti...

Descripción completa

Detalles Bibliográficos
Autores principales: Purtscher, Felix R. S., Christanell, Leo, Schulte, Moritz, Seiwald, Stefan, Rödl, Markus, Ober, Isabell, Maruschka, Leah K., Khoder, Hassan, Schwartz, Heidi A., Bendeif, El-Eulmi, Hofer, Thomas S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884096/
https://www.ncbi.nlm.nih.gov/pubmed/36721770
http://dx.doi.org/10.1021/acs.jpcc.2c05103
_version_ 1784879645232988160
author Purtscher, Felix R. S.
Christanell, Leo
Schulte, Moritz
Seiwald, Stefan
Rödl, Markus
Ober, Isabell
Maruschka, Leah K.
Khoder, Hassan
Schwartz, Heidi A.
Bendeif, El-Eulmi
Hofer, Thomas S.
author_facet Purtscher, Felix R. S.
Christanell, Leo
Schulte, Moritz
Seiwald, Stefan
Rödl, Markus
Ober, Isabell
Maruschka, Leah K.
Khoder, Hassan
Schwartz, Heidi A.
Bendeif, El-Eulmi
Hofer, Thomas S.
author_sort Purtscher, Felix R. S.
collection PubMed
description [Image: see text] The performance of different density functional tight binding (DFTB) methods for the description of six increasingly complex metal–organic framework (MOF) compounds have been assessed. In particular the self-consistent charge density functional tight binding (SCC DFTB) approach utilizing the 3ob and matsci parameter sets have been considered for a set of four Zn-based and two Al-based MOF systems. Moreover, the extended tight binding for geometries, frequencies, and noncovalent interactions (GFN2-xTB) approach has been considered as well. In addition to the application of energy minimizations of the respective unit cells, molecular dynamics (MD) simulations at constant temperature and pressure conditions (298.15 K, 1.013 bar) have been carried out to assess the performance of the different DFTB methods at nonzero thermal conditions. In order to obtain the XRD patterns from the MD simulations, a flexible workflow to obtain time-averaged XRD patterns from (in this study 5000) individual snapshots taken at regular intervals over the simulation trajectory has been applied. In addition, the comparison of pair-distribution functions (PDFs) directly accessible from the simulation data shows very good agreement with experimental reference data obtained via measurements employing synchrotron radiation in case of MOF-5. The comparison of the lattice constants and the associated X-ray diffraction (XRD) patterns with the experimental reference data demonstrate, that the SCC DFTB approach provides a highly efficient and accurate description of the target systems.
format Online
Article
Text
id pubmed-9884096
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-98840962023-01-29 Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach Purtscher, Felix R. S. Christanell, Leo Schulte, Moritz Seiwald, Stefan Rödl, Markus Ober, Isabell Maruschka, Leah K. Khoder, Hassan Schwartz, Heidi A. Bendeif, El-Eulmi Hofer, Thomas S. J Phys Chem C Nanomater Interfaces [Image: see text] The performance of different density functional tight binding (DFTB) methods for the description of six increasingly complex metal–organic framework (MOF) compounds have been assessed. In particular the self-consistent charge density functional tight binding (SCC DFTB) approach utilizing the 3ob and matsci parameter sets have been considered for a set of four Zn-based and two Al-based MOF systems. Moreover, the extended tight binding for geometries, frequencies, and noncovalent interactions (GFN2-xTB) approach has been considered as well. In addition to the application of energy minimizations of the respective unit cells, molecular dynamics (MD) simulations at constant temperature and pressure conditions (298.15 K, 1.013 bar) have been carried out to assess the performance of the different DFTB methods at nonzero thermal conditions. In order to obtain the XRD patterns from the MD simulations, a flexible workflow to obtain time-averaged XRD patterns from (in this study 5000) individual snapshots taken at regular intervals over the simulation trajectory has been applied. In addition, the comparison of pair-distribution functions (PDFs) directly accessible from the simulation data shows very good agreement with experimental reference data obtained via measurements employing synchrotron radiation in case of MOF-5. The comparison of the lattice constants and the associated X-ray diffraction (XRD) patterns with the experimental reference data demonstrate, that the SCC DFTB approach provides a highly efficient and accurate description of the target systems. American Chemical Society 2023-01-10 /pmc/articles/PMC9884096/ /pubmed/36721770 http://dx.doi.org/10.1021/acs.jpcc.2c05103 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Purtscher, Felix R. S.
Christanell, Leo
Schulte, Moritz
Seiwald, Stefan
Rödl, Markus
Ober, Isabell
Maruschka, Leah K.
Khoder, Hassan
Schwartz, Heidi A.
Bendeif, El-Eulmi
Hofer, Thomas S.
Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title_full Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title_fullStr Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title_full_unstemmed Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title_short Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach
title_sort structural properties of metal–organic frameworks at elevated thermal conditions via a combined density functional tight binding molecular dynamics (dftb md) approach
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884096/
https://www.ncbi.nlm.nih.gov/pubmed/36721770
http://dx.doi.org/10.1021/acs.jpcc.2c05103
work_keys_str_mv AT purtscherfelixrs structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT christanellleo structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT schultemoritz structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT seiwaldstefan structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT rodlmarkus structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT oberisabell structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT maruschkaleahk structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT khoderhassan structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT schwartzheidia structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT bendeifeleulmi structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach
AT hoferthomass structuralpropertiesofmetalorganicframeworksatelevatedthermalconditionsviaacombineddensityfunctionaltightbindingmoleculardynamicsdftbmdapproach