Cargando…

Error and optimism bias regularization

In Machine Learning, prediction quality is usually measured using different techniques and evaluation methods. In the regression models, the goal is to minimize the distance between the actual and predicted value. This error evaluation technique lacks a detailed evaluation of the type of errors that...

Descripción completa

Detalles Bibliográficos
Autor principal: Sohaee, Nassim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884131/
https://www.ncbi.nlm.nih.gov/pubmed/36744123
http://dx.doi.org/10.1186/s40537-023-00685-9
Descripción
Sumario:In Machine Learning, prediction quality is usually measured using different techniques and evaluation methods. In the regression models, the goal is to minimize the distance between the actual and predicted value. This error evaluation technique lacks a detailed evaluation of the type of errors that occur on specific data. This paper will introduce a simple regularization term to manage the number of over-predicted/under-predicted instances in a regression model.