Cargando…
Error and optimism bias regularization
In Machine Learning, prediction quality is usually measured using different techniques and evaluation methods. In the regression models, the goal is to minimize the distance between the actual and predicted value. This error evaluation technique lacks a detailed evaluation of the type of errors that...
Autor principal: | Sohaee, Nassim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884131/ https://www.ncbi.nlm.nih.gov/pubmed/36744123 http://dx.doi.org/10.1186/s40537-023-00685-9 |
Ejemplares similares
-
Regularization and error assignment to unfolded distributions
por: Zech, Gunter
Publicado: (2011) -
Statistical regularities bias overt attention
por: Wang, Benchi, et al.
Publicado: (2019) -
Toward Reducing Phylostratigraphic Errors and Biases
por: Moyers, Bryan A, et al.
Publicado: (2018) -
Cross-linguistic regularities and learner biases reflect “core” mechanics
por: Strickland, Brent, et al.
Publicado: (2018) -
No evidence for an attentional bias towards implicit temporal regularities
por: Damsma, Atser, et al.
Publicado: (2019)