Cargando…
Atrial Fibrillation Detection with Low Signal-to-Noise Ratio Data Using Artificial Features and Abstract Features
Detecting atrial fibrillation (AF) of short single-lead electrocardiogram (ECG) with low signal-to-noise ratio (SNR) is a key of the wearable heart monitoring system. This study proposed an AF detection method based on feature fusion to identify AF rhythm (A) from other three categories of ECG recor...
Autores principales: | Bao, Zhe, Li, Dong, Jiang, Shoufen, Zhang, Liting, Zhang, Yatao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884164/ https://www.ncbi.nlm.nih.gov/pubmed/36718172 http://dx.doi.org/10.1155/2023/3269144 |
Ejemplares similares
-
Analysis of Relevant Features from Photoplethysmographic Signals for Atrial Fibrillation Classification
por: Millán, César A., et al.
Publicado: (2020) -
Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal
por: Jiang, Fangfang, et al.
Publicado: (2021) -
Self-palpation for detection of paroxysmal atrial fibrillation: Much noise with little signal
por: Rahimi, Kazem, et al.
Publicado: (2020) -
Optimal Signal Detection in a Low Signal-to-Noise Ratio Environment
por: Ciodaro, T, et al.
Publicado: (2011) -
An Interpretable Hand-Crafted Feature-Based Model for Atrial Fibrillation Detection
por: Rouhi, Rahimeh, et al.
Publicado: (2021)