Cargando…
Next-Generation Morphometry for pathomics-data mining in histopathology
Pathology diagnostics relies on the assessment of morphology by trained experts, which remains subjective and qualitative. Here we developed a framework for large-scale histomorphometry (FLASH) performing deep learning-based semantic segmentation and subsequent large-scale extraction of interpretabl...
Autores principales: | Hölscher, David L., Bouteldja, Nassim, Joodaki, Mehdi, Russo, Maria L., Lan, Yu-Chia, Sadr, Alireza Vafaei, Cheng, Mingbo, Tesar, Vladimir, Stillfried, Saskia V., Klinkhammer, Barbara M., Barratt, Jonathan, Floege, Jürgen, Roberts, Ian S. D., Coppo, Rosanna, Costa, Ivan G., Bülow, Roman D., Boor, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884209/ https://www.ncbi.nlm.nih.gov/pubmed/36709324 http://dx.doi.org/10.1038/s41467-023-36173-0 |
Ejemplares similares
-
Extending the landscape of omics technologies by pathomics
por: Bülow, Roman D., et al.
Publicado: (2023) -
Tackling stain variability using CycleGAN-based stain augmentation
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
Semiautomated pipeline for quantitative analysis of heart histopathology
por: Droste, Patrick, et al.
Publicado: (2023) -
Large-scale extraction of interpretable features provides new insights into kidney histopathology – A proof-of-concept study
por: Gupta, Laxmi, et al.
Publicado: (2022) -
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
por: Bouteldja, Nassim, et al.
Publicado: (2022)