Cargando…
Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning
In-sensor multi-task learning is not only the key merit of biological visions but also a primary goal of artificial-general-intelligence. However, traditional silicon-vision-chips suffer from large time/energy overheads. Further, training conventional deep-learning models is neither scalable nor aff...
Autores principales: | Wu, Xiaosong, Wang, Shaocong, Huang, Wei, Dong, Yu, Wang, Zhongrui, Huang, Weiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884246/ https://www.ncbi.nlm.nih.gov/pubmed/36709349 http://dx.doi.org/10.1038/s41467-023-36205-9 |
Ejemplares similares
-
Optoelectronic Reservoir Computing
por: Paquot, Y., et al.
Publicado: (2012) -
Optoelectronics of Molecules and Polymers
por: Moliton, André
Publicado: (2006) -
Photonic and optoelectronic polymers
por: Jenekhe, Samson A, et al.
Publicado: (1997) -
Photonic reinforcement learning based on optoelectronic reservoir computing
por: Kanno, Kazutaka, et al.
Publicado: (2022) -
Ultrafast Tracking of Exciton and Charge Carrier Transport
in Optoelectronic Materials on the Nanometer Scale
por: Schnedermann, Christoph, et al.
Publicado: (2019)