Cargando…
Numerical simulation and optimization of AC electrothermal microfluidic biosensor for COVID-19 detection through Taguchi method and artificial network
Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target antigen is strongly affected by process parameters. The p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884486/ https://www.ncbi.nlm.nih.gov/pubmed/36741917 http://dx.doi.org/10.1140/epjp/s13360-023-03712-z |
Sumario: | Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target antigen is strongly affected by process parameters. The purpose of this research was to optimize the performance of a microfluidic biosensor using two different approaches: Taguchi optimization and artificial neural network (ANN) optimization. Taguchi L8(2(5)) orthogonal array involving eight groups of experiments for five key parameters, which are microchannel shape, biosensor position, applied alternating current voltage, adsorption constant, and average inlet flow velocity, at two levels each, are performed to minimize the detection time of a biosensor excited by an alternating current electrothermal force. Signal to noise ratio ([Formula: see text] ) and analysis of variance were used to reach the optimal levels of process parameters and to demonstrate their percentage contributions, in terms of improved device response time. The principal results of this study showed that the Taguchi method was able to identify that the kinetic adsorption rate is the most influential parameter at 93% contribution, and the reaction surface position is the least influential parameter at 0.07% contribution. Also, the ANN model was able to accurately predict the optimal input values with a very low prediction error. Overall, the major conclusion of this study is both the Taguchi and ANN approaches can be effectively utilized to optimize the performance of a microfluidic biosensor. These advances have the potential to revolutionize the field of biosensing. |
---|