Cargando…
Transfer learning for the efficient detection of COVID-19 from smartphone audio data
Disease detection from smartphone data represents an open research challenge in mobile health (m-health) systems. COVID-19 and its respiratory symptoms are an important case study in this area and their early detection is a potential real instrument to counteract the pandemic situation. The efficacy...
Autores principales: | Campana, Mattia Giovanni, Delmastro, Franca, Pagani, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884612/ https://www.ncbi.nlm.nih.gov/pubmed/36741300 http://dx.doi.org/10.1016/j.pmcj.2023.101754 |
Ejemplares similares
-
ContextLabeler dataset: Physical and virtual sensors data collected from smartphone usage in-the-wild
por: Campana, Mattia Giovanni, et al.
Publicado: (2021) -
DeepSpectrumLite: A Power-Efficient Transfer Learning Framework for Embedded Speech and Audio Processing From Decentralized Data
por: Amiriparian, Shahin, et al.
Publicado: (2022) -
Transfer Learning for Improved Audio-Based Human Activity Recognition
por: Ntalampiras, Stavros, et al.
Publicado: (2018) -
An efficient watermarking algorithm for digital audio data in security applications
por: Yamni, Mohamed, et al.
Publicado: (2023) -
COVID-19 detection from audio: seven grains of salt
por: Coppock, Harry, et al.
Publicado: (2021)