Cargando…
MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation
Medical image segmentation is a challenging task due to the high variation in shape, size and position of infections or lesions in medical images. It is necessary to construct multi-scale representations to capture image contents from different scales. However, it is still challenging for U-Net with...
Autores principales: | Wang, Haonan, Cao, Peng, Yang, Jinzhu, Zaiane, Osmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884736/ https://www.ncbi.nlm.nih.gov/pubmed/36721640 http://dx.doi.org/10.1007/s13755-022-00209-4 |
Ejemplares similares
-
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022) -
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021)