Cargando…
Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls
PURPOSE: To investigate the impact of the following three methodological pitfalls on model generalizability: (a) violation of the independence assumption, (b) model evaluation with an inappropriate performance indicator or baseline for comparison, and (c) batch effect. MATERIALS AND METHODS: The aut...
Autores principales: | Maleki, Farhad, Ovens, Katie, Gupta, Rajiv, Reinhold, Caroline, Spatz, Alan, Forghani, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885377/ https://www.ncbi.nlm.nih.gov/pubmed/36721408 http://dx.doi.org/10.1148/ryai.220028 |
Ejemplares similares
-
Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models
por: Liu, Xiaoyang, et al.
Publicado: (2021) -
Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis
por: Al Bulushi, Yarab, et al.
Publicado: (2022) -
Gene Set Analysis: Challenges, Opportunities, and Future Research
por: Maleki, Farhad, et al.
Publicado: (2020) -
Size matters: how sample size affects the reproducibility and specificity of gene set analysis
por: Maleki, Farhad, et al.
Publicado: (2019) -
Juxtapose: a gene-embedding approach for comparing co-expression networks
por: Ovens, Katie, et al.
Publicado: (2021)