Cargando…
A Novel Texture Extraction-Based Compressive Sensing for Lung Cancer Classification
BACKGROUND: Lung cancer images require large memory storage and transmission bandwidth for sending the data. Compressive sensing (CS), as a method with a statistical approach in signal sampling, provides different output patterns based on information sources. Thus, it can be considered that CS can b...
Autores principales: | Irawati, Indrarini Dyah, Hadiyoso, Sugondo, Budiman, Gelar, Fahmi, Arfianto, Latip, Rohaya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885506/ https://www.ncbi.nlm.nih.gov/pubmed/36726419 http://dx.doi.org/10.4103/jmss.jmss_127_21 |
Ejemplares similares
-
Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification
por: Rizal, Achmad, et al.
Publicado: (2018) -
Multi Modal Feature Extraction for Classification of Vascular Dementia in Post-Stroke Patients Based on EEG Signal
por: Hadiyoso, Sugondo, et al.
Publicado: (2023) -
Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions
por: Erfianto, Bayu, et al.
Publicado: (2023) -
Design and Development Armband Vital Sign Monitor for Health-Care Monitoring
por: Hadiyoso, Sugondo, et al.
Publicado: (2021) -
EEG-Based Spectral Dynamic in Characterization of Poststroke Patients with Cognitive Impairment for Early Detection of Vascular Dementia
por: Hadiyoso, Sugondo, et al.
Publicado: (2022)