Cargando…
Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials
[Image: see text] Machine learning potentials (MLPs) capable of accurately describing complex ab initio potential energy surfaces (PESs) have revolutionized the field of multiscale atomistic modeling. In this work, using an extensive density functional theory (DFT) data set (denoted as Si-ZEO22) con...
Autores principales: | Sours, Tyler G., Kulkarni, Ambarish R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885523/ https://www.ncbi.nlm.nih.gov/pubmed/36733763 http://dx.doi.org/10.1021/acs.jpcc.2c08429 |
Ejemplares similares
-
Cost-Effective Quantum Mechanical Approach for Predicting
Thermodynamic and Mechanical Stability of Pure-Silica Zeolites
por: Cutini, Michele, et al.
Publicado: (2019) -
Deep Neural Networks for the Classification of Pure and Impure Strawberry Purees
por: Zheng, Zhong, et al.
Publicado: (2020) -
Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports
por: Palomino, Miguel, et al.
Publicado: (2020) -
Quantitative Structure–Property
Relationship
Analysis for the Prediction of Propylene Adsorption Capacity in Pure
Silicon Zeolites at Various Pressure Levels
por: Zhao, Li, et al.
Publicado: (2022) -
Energetic Performance of Pure Silica Zeolites under High-Pressure Intrusion of LiCl Aqueous Solutions: An Overview
por: Confalonieri, Giorgia, et al.
Publicado: (2020)