Cargando…
14-3-3 proteins regulate cullin 7-mediated Eag1 degradation
BACKGROUND: Mutations in the human gene encoding the neuron-specific Eag1 (K(V)10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis. Both the E3 ubiquitin ligase c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885684/ https://www.ncbi.nlm.nih.gov/pubmed/36717938 http://dx.doi.org/10.1186/s13578-023-00969-w |
Sumario: | BACKGROUND: Mutations in the human gene encoding the neuron-specific Eag1 (K(V)10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis. Both the E3 ubiquitin ligase cullin 7 (Cul7) and the small acid protein 14-3-3 serve as binding partners of Eag1. Cul7 mediates proteasomal and lysosomal degradation of Eag1 protein, whereas over-expression of 14-3-3 notably reduces Eag1 channel activity. It remains unclear whether 14-3-3 may also contribute to Eag1 protein homeostasis. RESULTS: In human cell line and native rat neurons, disruptions of endogenous 14-3-3 function with the peptide inhibitor difopein or specific RNA interference up-regulated Eag1 protein level in a transcription-independent manner. Difopein hindered Eag1 protein ubiquitination at the endoplasmic reticulum and the plasma membrane, effectively promoting the stability of both immature and mature Eag1 proteins. Suppression of endogenous 14-3-3 function also reduced excitotoxicity-associated Eag1 degradation in neurons. Difopein diminished Cul7-mediated Eag1 degradation, and Cul7 knock-down abolished the effect of difopein on Eag1. Inhibition of endogenous 14-3-3 function substantially perturbed the interaction of Eag1 with Cul7. Further structural analyses suggested that the intracellular Per-Arnt-Sim (PAS) domain and cyclic nucleotide-binding homology domain (CNBHD) of Eag1 are essential for the regulatory effect of 14-3-3 proteins. Significantly, suppression of endogenous 14-3-3 function reduced Cul7-mediated degradation of disease-associated Eag1 mutant proteins. CONCLUSION: Overall these results highlight a chaperone-like role of endogenous 14-3-3 proteins in regulating Eag1 protein homeostasis, as well as a therapeutic potential of 14-3-3 modulators in correcting defective protein expression of disease-causing Eag1 mutants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-023-00969-w. |
---|