Cargando…
A mechanics model based on information entropy for identifying influencers in complex networks
The network, with some or all characteristics of scale-free, self-similarity, self-organization, attractor and small world, is defined as a complex network. The identification of significant spreaders is an indispensable research direction in complex networks, which aims to discover nodes that play...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885924/ https://www.ncbi.nlm.nih.gov/pubmed/36741743 http://dx.doi.org/10.1007/s10489-023-04457-z |
Sumario: | The network, with some or all characteristics of scale-free, self-similarity, self-organization, attractor and small world, is defined as a complex network. The identification of significant spreaders is an indispensable research direction in complex networks, which aims to discover nodes that play a crucial role in the structure and function of the network. Since influencers are essential for studying the security of the network and controlling the propagation process of the network, their assessment methods are of great significance and practical value to solve many problems. However, how to effectively combine global information with local information is still an open problem. To solve this problem, the generalized mechanics model is further improved in this paper. A generalized mechanics model based on information entropy is proposed to discover crucial spreaders in complex networks. The influence of each neighbor node on local information is quantified by information entropy, and the interaction between each node on global information is considered by calculating the shortest distance. Extensive tests on eleven real networks indicate the proposed approach is much faster and more precise than traditional ways and state-of-the-art benchmarks. At the same time, it is effective to use our approach to identify influencers in complex networks. |
---|