Cargando…

Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi

Neuromorphic hardware is based on emulating the natural biological structure of the brain. Since its computational model is similar to standard neural models, it could serve as a computational accelerator for research projects in the field of neuroscience and artificial intelligence, including biome...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Srijanie, Dimitrov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886005/
https://www.ncbi.nlm.nih.gov/pubmed/36726406
http://dx.doi.org/10.3389/fninf.2022.883360
_version_ 1784880043486347264
author Dey, Srijanie
Dimitrov, Alexander
author_facet Dey, Srijanie
Dimitrov, Alexander
author_sort Dey, Srijanie
collection PubMed
description Neuromorphic hardware is based on emulating the natural biological structure of the brain. Since its computational model is similar to standard neural models, it could serve as a computational accelerator for research projects in the field of neuroscience and artificial intelligence, including biomedical applications. However, in order to exploit this new generation of computer chips, we ought to perform rigorous simulation and consequent validation of neuromorphic models against their conventional implementations. In this work, we lay out the numeric groundwork to enable a comparison between neuromorphic and conventional platforms. “Loihi”—Intel's fifth generation neuromorphic chip, which is based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons in the brain, serves as our neuromorphic platform. The work here focuses on Leaky Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex and matched to a rich data set of anatomical, physiological and behavioral constraints. Simulations on classical hardware serve as the validation platform for the neuromorphic implementation. We find that Loihi replicates classical simulations very efficiently with high precision. As a by-product, we also investigate Loihi's potential in terms of scalability and performance and find that it scales notably well in terms of run-time performance as the simulated networks become larger.
format Online
Article
Text
id pubmed-9886005
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98860052023-01-31 Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi Dey, Srijanie Dimitrov, Alexander Front Neuroinform Neuroscience Neuromorphic hardware is based on emulating the natural biological structure of the brain. Since its computational model is similar to standard neural models, it could serve as a computational accelerator for research projects in the field of neuroscience and artificial intelligence, including biomedical applications. However, in order to exploit this new generation of computer chips, we ought to perform rigorous simulation and consequent validation of neuromorphic models against their conventional implementations. In this work, we lay out the numeric groundwork to enable a comparison between neuromorphic and conventional platforms. “Loihi”—Intel's fifth generation neuromorphic chip, which is based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons in the brain, serves as our neuromorphic platform. The work here focuses on Leaky Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex and matched to a rich data set of anatomical, physiological and behavioral constraints. Simulations on classical hardware serve as the validation platform for the neuromorphic implementation. We find that Loihi replicates classical simulations very efficiently with high precision. As a by-product, we also investigate Loihi's potential in terms of scalability and performance and find that it scales notably well in terms of run-time performance as the simulated networks become larger. Frontiers Media S.A. 2022-05-30 /pmc/articles/PMC9886005/ /pubmed/36726406 http://dx.doi.org/10.3389/fninf.2022.883360 Text en Copyright © 2022 Dey and Dimitrov. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Dey, Srijanie
Dimitrov, Alexander
Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title_full Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title_fullStr Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title_full_unstemmed Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title_short Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
title_sort mapping and validating a point neuron model on intel's neuromorphic hardware loihi
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886005/
https://www.ncbi.nlm.nih.gov/pubmed/36726406
http://dx.doi.org/10.3389/fninf.2022.883360
work_keys_str_mv AT deysrijanie mappingandvalidatingapointneuronmodelonintelsneuromorphichardwareloihi
AT dimitrovalexander mappingandvalidatingapointneuronmodelonintelsneuromorphichardwareloihi