Cargando…
Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures
Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSC...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886280/ https://www.ncbi.nlm.nih.gov/pubmed/36715686 http://dx.doi.org/10.7554/eLife.83138 |
_version_ | 1784880101068898304 |
---|---|
author | Khan, Nazir M Diaz-Hernandez, Martha Elena Chihab, Samir Priyadarshani, Priyanka Bhattaram, Pallavi Mortensen, Luke J Guzzo, Rosa M Drissi, Hicham |
author_facet | Khan, Nazir M Diaz-Hernandez, Martha Elena Chihab, Samir Priyadarshani, Priyanka Bhattaram, Pallavi Mortensen, Luke J Guzzo, Rosa M Drissi, Hicham |
author_sort | Khan, Nazir M |
collection | PubMed |
description | Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs. |
format | Online Article Text |
id | pubmed-9886280 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-98862802023-01-31 Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures Khan, Nazir M Diaz-Hernandez, Martha Elena Chihab, Samir Priyadarshani, Priyanka Bhattaram, Pallavi Mortensen, Luke J Guzzo, Rosa M Drissi, Hicham eLife Cell Biology Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs. eLife Sciences Publications, Ltd 2023-01-30 /pmc/articles/PMC9886280/ /pubmed/36715686 http://dx.doi.org/10.7554/eLife.83138 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication (https://creativecommons.org/publicdomain/zero/1.0/) . |
spellingShingle | Cell Biology Khan, Nazir M Diaz-Hernandez, Martha Elena Chihab, Samir Priyadarshani, Priyanka Bhattaram, Pallavi Mortensen, Luke J Guzzo, Rosa M Drissi, Hicham Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title | Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title_full | Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title_fullStr | Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title_full_unstemmed | Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title_short | Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
title_sort | differential chondrogenic differentiation between ipsc derived from healthy and oa cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886280/ https://www.ncbi.nlm.nih.gov/pubmed/36715686 http://dx.doi.org/10.7554/eLife.83138 |
work_keys_str_mv | AT khannazirm differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT diazhernandezmarthaelena differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT chihabsamir differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT priyadarshanipriyanka differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT bhattarampallavi differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT mortensenlukej differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT guzzorosam differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures AT drissihicham differentialchondrogenicdifferentiationbetweenipscderivedfromhealthyandoacartilageisassociatedwithchangesinepigeneticregulationandmetabolictranscriptomicsignatures |