Cargando…
End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins
Systematically discovering protein-ligand interactions across the entire human and pathogen genomes is critical in chemical genomics, protein function prediction, drug discovery, and many other areas. However, more than 90% of gene families remain “dark”—i.e., their small-molecule ligands are undisc...
Autores principales: | Cai, Tian, Xie, Li, Zhang, Shuo, Chen, Muge, He, Di, Badkul, Amitesh, Liu, Yang, Namballa, Hari Krishna, Dorogan, Michael, Harding, Wayne W., Mura, Cameron, Bourne, Philip E., Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886305/ https://www.ncbi.nlm.nih.gov/pubmed/36652496 http://dx.doi.org/10.1371/journal.pcbi.1010851 |
Ejemplares similares
-
Exploration of Dark Chemical Genomics Space via Portal Learning: Applied to Targeting the Undruggable Genome and COVID-19 Anti-Infective Polypharmacology
por: Cai, Tian, et al.
Publicado: (2021) -
Structure–Activity Relationship Studies on 6-Chloro-1-phenylbenzazepines Leads to the Identification of a New Dopamine D1 Receptor Antagonist
por: Giri, Rajan, et al.
Publicado: (2023) -
The curse of the protein ribbon diagram
por: Bourne, Philip E., et al.
Publicado: (2022) -
Making Ends Meet: Chemically Mediated Circularization of Recombinant Proteins
por: Cowper, Ben, et al.
Publicado: (2013) -
End-to-end DSL architectures
por: Vermillion, Wayne C
Publicado: (2003)