Cargando…
A Neural Learning Approach for a Data-Driven Nonlinear Error Correction Model
A nonlinear error correction model (ECM) is developed to fit nonlinear relationships between the nonstationary time series in a cointegration relationship. Different from the previous parametric methods, this paper constructs a hybrid neural network to learn the nonlinear error correction model by c...
Autores principales: | Fang, Xi, Yang, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886459/ https://www.ncbi.nlm.nih.gov/pubmed/36726356 http://dx.doi.org/10.1155/2023/5884314 |
Ejemplares similares
-
Correction: Data-Driven Method to Estimate Nonlinear Chemical Equivalence
Publicado: (2015) -
Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems
por: Cenedese, M., et al.
Publicado: (2022) -
Data-Driven Analysis of Nonlinear Heterogeneous Reactions through Sparse Modeling and Bayesian Statistical Approaches
por: Ito, Masaki, et al.
Publicado: (2021) -
Data-driven outbreak forecasting with a simple nonlinear growth model
por: Lega, Joceline, et al.
Publicado: (2016) -
Data-driven modeling of nonlinear materials in normal-conducting magnets
por: Sorti, Stefano, et al.
Publicado: (2022)