Cargando…
MCFN: A Multichannel Fusion Network for Sleep Apnea Syndrome Detection
Sleep apnea syndrome (SAS) is the most common sleep disorder which affects human life and health. Many researchers use deep learning methods to automatically learn the features of physiological signals. However, these methods ignore the different effects of multichannel features from various physiol...
Autores principales: | Lv, Xingfeng, Li, Jinbao, Ren, Qianqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886480/ https://www.ncbi.nlm.nih.gov/pubmed/36726772 http://dx.doi.org/10.1155/2023/5287043 |
Ejemplares similares
-
A Multilevel Temporal Context Network for Sleep Stage Classification
por: Lv, Xingfeng, et al.
Publicado: (2022) -
Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring
por: Castro, Ivan D., et al.
Publicado: (2018) -
Convolutional neural network based on photoplethysmography signals for sleep apnea syndrome detection
por: Jiang, Xinge, et al.
Publicado: (2023) -
Adipocytokines in sleep apnea syndrome
por: Wysocka, E, et al.
Publicado: (2009) -
Multichannel Surface EMG Decomposition Based on Measurement Correlation and LMMSE
por: Ning, Yong, et al.
Publicado: (2018)