Cargando…
Towards an automated data cleaning with deep learning in CRESST
The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886615/ https://www.ncbi.nlm.nih.gov/pubmed/36741916 http://dx.doi.org/10.1140/epjp/s13360-023-03674-2 |
_version_ | 1784880168670593024 |
---|---|
author | Angloher, G. Banik, S. Bartolot, D. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F. v. Iachellini, N. Ferreiro Fichtinger, S. Fuchs, D. Fuss, A. Garai, A. Ghete, V. M. Gerster, S. Gorla, P. Guillaumon, P. V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kluck, H. Kraus, H. Lackner, M. Langenkämper, A. Mancuso, M. Marini, L. Meyer, L. Mokina, V. Nilima, A. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rizvanovic, D. Rothe, J. Schäffner, K. Schieck, J. Schmiedmayer, D. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Willers, M. Zema, V. Waltenberger, W. |
author_facet | Angloher, G. Banik, S. Bartolot, D. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F. v. Iachellini, N. Ferreiro Fichtinger, S. Fuchs, D. Fuss, A. Garai, A. Ghete, V. M. Gerster, S. Gorla, P. Guillaumon, P. V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kluck, H. Kraus, H. Lackner, M. Langenkämper, A. Mancuso, M. Marini, L. Meyer, L. Mokina, V. Nilima, A. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rizvanovic, D. Rothe, J. Schäffner, K. Schieck, J. Schmiedmayer, D. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Willers, M. Zema, V. Waltenberger, W. |
author_sort | Angloher, G. |
collection | PubMed |
description | The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task. |
format | Online Article Text |
id | pubmed-9886615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-98866152023-02-01 Towards an automated data cleaning with deep learning in CRESST Angloher, G. Banik, S. Bartolot, D. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F. v. Iachellini, N. Ferreiro Fichtinger, S. Fuchs, D. Fuss, A. Garai, A. Ghete, V. M. Gerster, S. Gorla, P. Guillaumon, P. V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kluck, H. Kraus, H. Lackner, M. Langenkämper, A. Mancuso, M. Marini, L. Meyer, L. Mokina, V. Nilima, A. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rizvanovic, D. Rothe, J. Schäffner, K. Schieck, J. Schmiedmayer, D. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Willers, M. Zema, V. Waltenberger, W. Eur Phys J Plus Regular Article The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task. Springer Berlin Heidelberg 2023-01-30 2023 /pmc/articles/PMC9886615/ /pubmed/36741916 http://dx.doi.org/10.1140/epjp/s13360-023-03674-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Regular Article Angloher, G. Banik, S. Bartolot, D. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F. v. Iachellini, N. Ferreiro Fichtinger, S. Fuchs, D. Fuss, A. Garai, A. Ghete, V. M. Gerster, S. Gorla, P. Guillaumon, P. V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kluck, H. Kraus, H. Lackner, M. Langenkämper, A. Mancuso, M. Marini, L. Meyer, L. Mokina, V. Nilima, A. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rizvanovic, D. Rothe, J. Schäffner, K. Schieck, J. Schmiedmayer, D. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Willers, M. Zema, V. Waltenberger, W. Towards an automated data cleaning with deep learning in CRESST |
title | Towards an automated data cleaning with deep learning in CRESST |
title_full | Towards an automated data cleaning with deep learning in CRESST |
title_fullStr | Towards an automated data cleaning with deep learning in CRESST |
title_full_unstemmed | Towards an automated data cleaning with deep learning in CRESST |
title_short | Towards an automated data cleaning with deep learning in CRESST |
title_sort | towards an automated data cleaning with deep learning in cresst |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886615/ https://www.ncbi.nlm.nih.gov/pubmed/36741916 http://dx.doi.org/10.1140/epjp/s13360-023-03674-2 |
work_keys_str_mv | AT angloherg towardsanautomateddatacleaningwithdeeplearningincresst AT baniks towardsanautomateddatacleaningwithdeeplearningincresst AT bartolotd towardsanautomateddatacleaningwithdeeplearningincresst AT benatog towardsanautomateddatacleaningwithdeeplearningincresst AT bentoa towardsanautomateddatacleaningwithdeeplearningincresst AT bertolinia towardsanautomateddatacleaningwithdeeplearningincresst AT breierr towardsanautomateddatacleaningwithdeeplearningincresst AT buccic towardsanautomateddatacleaningwithdeeplearningincresst AT burkhartj towardsanautomateddatacleaningwithdeeplearningincresst AT canonical towardsanautomateddatacleaningwithdeeplearningincresst AT daddabboa towardsanautomateddatacleaningwithdeeplearningincresst AT dilorenzos towardsanautomateddatacleaningwithdeeplearningincresst AT einfaltl towardsanautomateddatacleaningwithdeeplearningincresst AT erba towardsanautomateddatacleaningwithdeeplearningincresst AT feilitzschfv towardsanautomateddatacleaningwithdeeplearningincresst AT iachellininferreiro towardsanautomateddatacleaningwithdeeplearningincresst AT fichtingers towardsanautomateddatacleaningwithdeeplearningincresst AT fuchsd towardsanautomateddatacleaningwithdeeplearningincresst AT fussa towardsanautomateddatacleaningwithdeeplearningincresst AT garaia towardsanautomateddatacleaningwithdeeplearningincresst AT ghetevm towardsanautomateddatacleaningwithdeeplearningincresst AT gersters towardsanautomateddatacleaningwithdeeplearningincresst AT gorlap towardsanautomateddatacleaningwithdeeplearningincresst AT guillaumonpv towardsanautomateddatacleaningwithdeeplearningincresst AT guptas towardsanautomateddatacleaningwithdeeplearningincresst AT hauffd towardsanautomateddatacleaningwithdeeplearningincresst AT jeskovskym towardsanautomateddatacleaningwithdeeplearningincresst AT jochumj towardsanautomateddatacleaningwithdeeplearningincresst AT kaznacheevam towardsanautomateddatacleaningwithdeeplearningincresst AT kinasta towardsanautomateddatacleaningwithdeeplearningincresst AT kluckh towardsanautomateddatacleaningwithdeeplearningincresst AT kraush towardsanautomateddatacleaningwithdeeplearningincresst AT lacknerm towardsanautomateddatacleaningwithdeeplearningincresst AT langenkampera towardsanautomateddatacleaningwithdeeplearningincresst AT mancusom towardsanautomateddatacleaningwithdeeplearningincresst AT marinil towardsanautomateddatacleaningwithdeeplearningincresst AT meyerl towardsanautomateddatacleaningwithdeeplearningincresst AT mokinav towardsanautomateddatacleaningwithdeeplearningincresst AT nilimaa towardsanautomateddatacleaningwithdeeplearningincresst AT olmim towardsanautomateddatacleaningwithdeeplearningincresst AT ortmannt towardsanautomateddatacleaningwithdeeplearningincresst AT pagliaronec towardsanautomateddatacleaningwithdeeplearningincresst AT pattavinal towardsanautomateddatacleaningwithdeeplearningincresst AT petriccaf towardsanautomateddatacleaningwithdeeplearningincresst AT potzelw towardsanautomateddatacleaningwithdeeplearningincresst AT povinecp towardsanautomateddatacleaningwithdeeplearningincresst AT probstf towardsanautomateddatacleaningwithdeeplearningincresst AT puccif towardsanautomateddatacleaningwithdeeplearningincresst AT reindlf towardsanautomateddatacleaningwithdeeplearningincresst AT rizvanovicd towardsanautomateddatacleaningwithdeeplearningincresst AT rothej towardsanautomateddatacleaningwithdeeplearningincresst AT schaffnerk towardsanautomateddatacleaningwithdeeplearningincresst AT schieckj towardsanautomateddatacleaningwithdeeplearningincresst AT schmiedmayerd towardsanautomateddatacleaningwithdeeplearningincresst AT schonerts towardsanautomateddatacleaningwithdeeplearningincresst AT schwertnerc towardsanautomateddatacleaningwithdeeplearningincresst AT stahlbergm towardsanautomateddatacleaningwithdeeplearningincresst AT stodolskyl towardsanautomateddatacleaningwithdeeplearningincresst AT strandhagenc towardsanautomateddatacleaningwithdeeplearningincresst AT straussr towardsanautomateddatacleaningwithdeeplearningincresst AT usherovi towardsanautomateddatacleaningwithdeeplearningincresst AT wagnerf towardsanautomateddatacleaningwithdeeplearningincresst AT willersm towardsanautomateddatacleaningwithdeeplearningincresst AT zemav towardsanautomateddatacleaningwithdeeplearningincresst AT waltenbergerw towardsanautomateddatacleaningwithdeeplearningincresst AT towardsanautomateddatacleaningwithdeeplearningincresst |