Cargando…

Towards an automated data cleaning with deep learning in CRESST

The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame th...

Descripción completa

Detalles Bibliográficos
Autores principales: Angloher, G., Banik, S., Bartolot, D., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Di Lorenzo, S., Einfalt, L., Erb, A., Feilitzsch, F. v., Iachellini, N. Ferreiro, Fichtinger, S., Fuchs, D., Fuss, A., Garai, A., Ghete, V. M., Gerster, S., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Lackner, M., Langenkämper, A., Mancuso, M., Marini, L., Meyer, L., Mokina, V., Nilima, A., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rizvanovic, D., Rothe, J., Schäffner, K., Schieck, J., Schmiedmayer, D., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., Zema, V., Waltenberger, W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886615/
https://www.ncbi.nlm.nih.gov/pubmed/36741916
http://dx.doi.org/10.1140/epjp/s13360-023-03674-2
_version_ 1784880168670593024
author Angloher, G.
Banik, S.
Bartolot, D.
Benato, G.
Bento, A.
Bertolini, A.
Breier, R.
Bucci, C.
Burkhart, J.
Canonica, L.
D’Addabbo, A.
Di Lorenzo, S.
Einfalt, L.
Erb, A.
Feilitzsch, F. v.
Iachellini, N. Ferreiro
Fichtinger, S.
Fuchs, D.
Fuss, A.
Garai, A.
Ghete, V. M.
Gerster, S.
Gorla, P.
Guillaumon, P. V.
Gupta, S.
Hauff, D.
Ješkovský, M.
Jochum, J.
Kaznacheeva, M.
Kinast, A.
Kluck, H.
Kraus, H.
Lackner, M.
Langenkämper, A.
Mancuso, M.
Marini, L.
Meyer, L.
Mokina, V.
Nilima, A.
Olmi, M.
Ortmann, T.
Pagliarone, C.
Pattavina, L.
Petricca, F.
Potzel, W.
Povinec, P.
Pröbst, F.
Pucci, F.
Reindl, F.
Rizvanovic, D.
Rothe, J.
Schäffner, K.
Schieck, J.
Schmiedmayer, D.
Schönert, S.
Schwertner, C.
Stahlberg, M.
Stodolsky, L.
Strandhagen, C.
Strauss, R.
Usherov, I.
Wagner, F.
Willers, M.
Zema, V.
Waltenberger, W.
author_facet Angloher, G.
Banik, S.
Bartolot, D.
Benato, G.
Bento, A.
Bertolini, A.
Breier, R.
Bucci, C.
Burkhart, J.
Canonica, L.
D’Addabbo, A.
Di Lorenzo, S.
Einfalt, L.
Erb, A.
Feilitzsch, F. v.
Iachellini, N. Ferreiro
Fichtinger, S.
Fuchs, D.
Fuss, A.
Garai, A.
Ghete, V. M.
Gerster, S.
Gorla, P.
Guillaumon, P. V.
Gupta, S.
Hauff, D.
Ješkovský, M.
Jochum, J.
Kaznacheeva, M.
Kinast, A.
Kluck, H.
Kraus, H.
Lackner, M.
Langenkämper, A.
Mancuso, M.
Marini, L.
Meyer, L.
Mokina, V.
Nilima, A.
Olmi, M.
Ortmann, T.
Pagliarone, C.
Pattavina, L.
Petricca, F.
Potzel, W.
Povinec, P.
Pröbst, F.
Pucci, F.
Reindl, F.
Rizvanovic, D.
Rothe, J.
Schäffner, K.
Schieck, J.
Schmiedmayer, D.
Schönert, S.
Schwertner, C.
Stahlberg, M.
Stodolsky, L.
Strandhagen, C.
Strauss, R.
Usherov, I.
Wagner, F.
Willers, M.
Zema, V.
Waltenberger, W.
author_sort Angloher, G.
collection PubMed
description The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task.
format Online
Article
Text
id pubmed-9886615
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-98866152023-02-01 Towards an automated data cleaning with deep learning in CRESST Angloher, G. Banik, S. Bartolot, D. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F. v. Iachellini, N. Ferreiro Fichtinger, S. Fuchs, D. Fuss, A. Garai, A. Ghete, V. M. Gerster, S. Gorla, P. Guillaumon, P. V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kluck, H. Kraus, H. Lackner, M. Langenkämper, A. Mancuso, M. Marini, L. Meyer, L. Mokina, V. Nilima, A. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rizvanovic, D. Rothe, J. Schäffner, K. Schieck, J. Schmiedmayer, D. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Willers, M. Zema, V. Waltenberger, W. Eur Phys J Plus Regular Article The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task. Springer Berlin Heidelberg 2023-01-30 2023 /pmc/articles/PMC9886615/ /pubmed/36741916 http://dx.doi.org/10.1140/epjp/s13360-023-03674-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Regular Article
Angloher, G.
Banik, S.
Bartolot, D.
Benato, G.
Bento, A.
Bertolini, A.
Breier, R.
Bucci, C.
Burkhart, J.
Canonica, L.
D’Addabbo, A.
Di Lorenzo, S.
Einfalt, L.
Erb, A.
Feilitzsch, F. v.
Iachellini, N. Ferreiro
Fichtinger, S.
Fuchs, D.
Fuss, A.
Garai, A.
Ghete, V. M.
Gerster, S.
Gorla, P.
Guillaumon, P. V.
Gupta, S.
Hauff, D.
Ješkovský, M.
Jochum, J.
Kaznacheeva, M.
Kinast, A.
Kluck, H.
Kraus, H.
Lackner, M.
Langenkämper, A.
Mancuso, M.
Marini, L.
Meyer, L.
Mokina, V.
Nilima, A.
Olmi, M.
Ortmann, T.
Pagliarone, C.
Pattavina, L.
Petricca, F.
Potzel, W.
Povinec, P.
Pröbst, F.
Pucci, F.
Reindl, F.
Rizvanovic, D.
Rothe, J.
Schäffner, K.
Schieck, J.
Schmiedmayer, D.
Schönert, S.
Schwertner, C.
Stahlberg, M.
Stodolsky, L.
Strandhagen, C.
Strauss, R.
Usherov, I.
Wagner, F.
Willers, M.
Zema, V.
Waltenberger, W.
Towards an automated data cleaning with deep learning in CRESST
title Towards an automated data cleaning with deep learning in CRESST
title_full Towards an automated data cleaning with deep learning in CRESST
title_fullStr Towards an automated data cleaning with deep learning in CRESST
title_full_unstemmed Towards an automated data cleaning with deep learning in CRESST
title_short Towards an automated data cleaning with deep learning in CRESST
title_sort towards an automated data cleaning with deep learning in cresst
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886615/
https://www.ncbi.nlm.nih.gov/pubmed/36741916
http://dx.doi.org/10.1140/epjp/s13360-023-03674-2
work_keys_str_mv AT angloherg towardsanautomateddatacleaningwithdeeplearningincresst
AT baniks towardsanautomateddatacleaningwithdeeplearningincresst
AT bartolotd towardsanautomateddatacleaningwithdeeplearningincresst
AT benatog towardsanautomateddatacleaningwithdeeplearningincresst
AT bentoa towardsanautomateddatacleaningwithdeeplearningincresst
AT bertolinia towardsanautomateddatacleaningwithdeeplearningincresst
AT breierr towardsanautomateddatacleaningwithdeeplearningincresst
AT buccic towardsanautomateddatacleaningwithdeeplearningincresst
AT burkhartj towardsanautomateddatacleaningwithdeeplearningincresst
AT canonical towardsanautomateddatacleaningwithdeeplearningincresst
AT daddabboa towardsanautomateddatacleaningwithdeeplearningincresst
AT dilorenzos towardsanautomateddatacleaningwithdeeplearningincresst
AT einfaltl towardsanautomateddatacleaningwithdeeplearningincresst
AT erba towardsanautomateddatacleaningwithdeeplearningincresst
AT feilitzschfv towardsanautomateddatacleaningwithdeeplearningincresst
AT iachellininferreiro towardsanautomateddatacleaningwithdeeplearningincresst
AT fichtingers towardsanautomateddatacleaningwithdeeplearningincresst
AT fuchsd towardsanautomateddatacleaningwithdeeplearningincresst
AT fussa towardsanautomateddatacleaningwithdeeplearningincresst
AT garaia towardsanautomateddatacleaningwithdeeplearningincresst
AT ghetevm towardsanautomateddatacleaningwithdeeplearningincresst
AT gersters towardsanautomateddatacleaningwithdeeplearningincresst
AT gorlap towardsanautomateddatacleaningwithdeeplearningincresst
AT guillaumonpv towardsanautomateddatacleaningwithdeeplearningincresst
AT guptas towardsanautomateddatacleaningwithdeeplearningincresst
AT hauffd towardsanautomateddatacleaningwithdeeplearningincresst
AT jeskovskym towardsanautomateddatacleaningwithdeeplearningincresst
AT jochumj towardsanautomateddatacleaningwithdeeplearningincresst
AT kaznacheevam towardsanautomateddatacleaningwithdeeplearningincresst
AT kinasta towardsanautomateddatacleaningwithdeeplearningincresst
AT kluckh towardsanautomateddatacleaningwithdeeplearningincresst
AT kraush towardsanautomateddatacleaningwithdeeplearningincresst
AT lacknerm towardsanautomateddatacleaningwithdeeplearningincresst
AT langenkampera towardsanautomateddatacleaningwithdeeplearningincresst
AT mancusom towardsanautomateddatacleaningwithdeeplearningincresst
AT marinil towardsanautomateddatacleaningwithdeeplearningincresst
AT meyerl towardsanautomateddatacleaningwithdeeplearningincresst
AT mokinav towardsanautomateddatacleaningwithdeeplearningincresst
AT nilimaa towardsanautomateddatacleaningwithdeeplearningincresst
AT olmim towardsanautomateddatacleaningwithdeeplearningincresst
AT ortmannt towardsanautomateddatacleaningwithdeeplearningincresst
AT pagliaronec towardsanautomateddatacleaningwithdeeplearningincresst
AT pattavinal towardsanautomateddatacleaningwithdeeplearningincresst
AT petriccaf towardsanautomateddatacleaningwithdeeplearningincresst
AT potzelw towardsanautomateddatacleaningwithdeeplearningincresst
AT povinecp towardsanautomateddatacleaningwithdeeplearningincresst
AT probstf towardsanautomateddatacleaningwithdeeplearningincresst
AT puccif towardsanautomateddatacleaningwithdeeplearningincresst
AT reindlf towardsanautomateddatacleaningwithdeeplearningincresst
AT rizvanovicd towardsanautomateddatacleaningwithdeeplearningincresst
AT rothej towardsanautomateddatacleaningwithdeeplearningincresst
AT schaffnerk towardsanautomateddatacleaningwithdeeplearningincresst
AT schieckj towardsanautomateddatacleaningwithdeeplearningincresst
AT schmiedmayerd towardsanautomateddatacleaningwithdeeplearningincresst
AT schonerts towardsanautomateddatacleaningwithdeeplearningincresst
AT schwertnerc towardsanautomateddatacleaningwithdeeplearningincresst
AT stahlbergm towardsanautomateddatacleaningwithdeeplearningincresst
AT stodolskyl towardsanautomateddatacleaningwithdeeplearningincresst
AT strandhagenc towardsanautomateddatacleaningwithdeeplearningincresst
AT straussr towardsanautomateddatacleaningwithdeeplearningincresst
AT usherovi towardsanautomateddatacleaningwithdeeplearningincresst
AT wagnerf towardsanautomateddatacleaningwithdeeplearningincresst
AT willersm towardsanautomateddatacleaningwithdeeplearningincresst
AT zemav towardsanautomateddatacleaningwithdeeplearningincresst
AT waltenbergerw towardsanautomateddatacleaningwithdeeplearningincresst
AT towardsanautomateddatacleaningwithdeeplearningincresst