Cargando…

Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19

OBJECTIVE: Rapid progression of COVID-19 pneumonia may put patients at risk of requiring ventilatory support, such as non-invasive mechanical ventilation or endotracheal intubation. Implementing tools that detect COVID-19 pneumonia can improve the patient's healthcare. We aim to evaluate the ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Plasencia-Martínez, Juana María, Pérez-Costa, Rafael, Ballesta-Ruiz, Mónica, García-Santos, José María
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SERAM. Published by Elsevier España, S.L.U. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886647/
https://www.ncbi.nlm.nih.gov/pubmed/36744156
http://dx.doi.org/10.1016/j.rx.2022.11.012
_version_ 1784880175891087360
author Plasencia-Martínez, Juana María
Pérez-Costa, Rafael
Ballesta-Ruiz, Mónica
García-Santos, José María
author_facet Plasencia-Martínez, Juana María
Pérez-Costa, Rafael
Ballesta-Ruiz, Mónica
García-Santos, José María
author_sort Plasencia-Martínez, Juana María
collection PubMed
description OBJECTIVE: Rapid progression of COVID-19 pneumonia may put patients at risk of requiring ventilatory support, such as non-invasive mechanical ventilation or endotracheal intubation. Implementing tools that detect COVID-19 pneumonia can improve the patient's healthcare. We aim to evaluate the efficacy and efficiency of the artificial intelligence (AI) tool GE Healthcare's Thoracic Care Suite (featuring Lunit Insight CXR, TCS) to predict the ventilatory support need based on pneumonic progression of COVID-19 on consecutive chest X-rays. METHODS: Outpatients with confirmed SARS-CoV-2 infection, with chest X-ray (CXR) findings probable or indeterminate for COVID-19 pneumonia, who required a second CXR due to unfavorable clinical course, were collected. The number of affected lung fields for the 2 CXRs was assessed using the AI tool. RESULTS: One hundred fourteen patients (57.4 ± 14.2 years; 65 of them were men, 57%) were retrospectively collected; and 15 (13.2%) required ventilatory support. Progression of pneumonic extension ≥ 0.5 lung fields per day compared to pneumonia onset, detected using the TCS tool, increased the risk of requiring ventilatory support by 4-fold. Analyzing the AI output required 26 seconds of radiological time. CONCLUSIONS: Applying the AI tool, Thoracic Care Suite, to CXR of patients with COVID-19 pneumonia allows us to anticipate ventilatory support requirements requiring less than half a minute.
format Online
Article
Text
id pubmed-9886647
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SERAM. Published by Elsevier España, S.L.U.
record_format MEDLINE/PubMed
spelling pubmed-98866472023-01-31 Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19 Plasencia-Martínez, Juana María Pérez-Costa, Rafael Ballesta-Ruiz, Mónica García-Santos, José María Radiologia Original OBJECTIVE: Rapid progression of COVID-19 pneumonia may put patients at risk of requiring ventilatory support, such as non-invasive mechanical ventilation or endotracheal intubation. Implementing tools that detect COVID-19 pneumonia can improve the patient's healthcare. We aim to evaluate the efficacy and efficiency of the artificial intelligence (AI) tool GE Healthcare's Thoracic Care Suite (featuring Lunit Insight CXR, TCS) to predict the ventilatory support need based on pneumonic progression of COVID-19 on consecutive chest X-rays. METHODS: Outpatients with confirmed SARS-CoV-2 infection, with chest X-ray (CXR) findings probable or indeterminate for COVID-19 pneumonia, who required a second CXR due to unfavorable clinical course, were collected. The number of affected lung fields for the 2 CXRs was assessed using the AI tool. RESULTS: One hundred fourteen patients (57.4 ± 14.2 years; 65 of them were men, 57%) were retrospectively collected; and 15 (13.2%) required ventilatory support. Progression of pneumonic extension ≥ 0.5 lung fields per day compared to pneumonia onset, detected using the TCS tool, increased the risk of requiring ventilatory support by 4-fold. Analyzing the AI output required 26 seconds of radiological time. CONCLUSIONS: Applying the AI tool, Thoracic Care Suite, to CXR of patients with COVID-19 pneumonia allows us to anticipate ventilatory support requirements requiring less than half a minute. SERAM. Published by Elsevier España, S.L.U. 2023-01-31 /pmc/articles/PMC9886647/ /pubmed/36744156 http://dx.doi.org/10.1016/j.rx.2022.11.012 Text en © 2023 SERAM. Published by Elsevier España, S.L.U. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Original
Plasencia-Martínez, Juana María
Pérez-Costa, Rafael
Ballesta-Ruiz, Mónica
García-Santos, José María
Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title_full Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title_fullStr Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title_full_unstemmed Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title_short Eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial Thoracic Care Suite de GE aplicada a la radiografía torácica de pacientes con neumonía COVID-19
title_sort eficacia de la capacidad y la eficiencia pronósticas de la herramienta de inteligencia artificial thoracic care suite de ge aplicada a la radiografía torácica de pacientes con neumonía covid-19
topic Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886647/
https://www.ncbi.nlm.nih.gov/pubmed/36744156
http://dx.doi.org/10.1016/j.rx.2022.11.012
work_keys_str_mv AT plasenciamartinezjuanamaria eficaciadelacapacidadylaeficienciapronosticasdelaherramientadeinteligenciaartificialthoraciccaresuitedegeaplicadaalaradiografiatoracicadepacientesconneumoniacovid19
AT perezcostarafael eficaciadelacapacidadylaeficienciapronosticasdelaherramientadeinteligenciaartificialthoraciccaresuitedegeaplicadaalaradiografiatoracicadepacientesconneumoniacovid19
AT ballestaruizmonica eficaciadelacapacidadylaeficienciapronosticasdelaherramientadeinteligenciaartificialthoraciccaresuitedegeaplicadaalaradiografiatoracicadepacientesconneumoniacovid19
AT garciasantosjosemaria eficaciadelacapacidadylaeficienciapronosticasdelaherramientadeinteligenciaartificialthoraciccaresuitedegeaplicadaalaradiografiatoracicadepacientesconneumoniacovid19