Cargando…
High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886794/ https://www.ncbi.nlm.nih.gov/pubmed/35948858 http://dx.doi.org/10.1007/s11357-022-00634-z |
Sumario: | Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11357-022-00634-z. |
---|